This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152676 #18 Feb 26 2023 03:08:31 %S A152676 3,8,13,17,31,32,30,50,46,55,75,91,76,98,100,105,129,93,162,112,183, %T A152676 122,144,177,241,187,217,228,155,288,203,189,213,311,269,274,334,381, %U A152676 266,392,254,382,348,413,301,286,489,439,483,553,516,476,578,423,487,504 %N A152676 a(n) = A002144(n) - A002314(n). %C A152676 For the four numbers {1, A002314(n), A152676(n), A152680(n)}, the multiplication table modulo A002144(n) is isomorphic with the Latin square %C A152676 1 2 3 4 %C A152676 2 4 1 3 %C A152676 3 1 4 2 %C A152676 4 3 2 1 %C A152676 and is isomorphic with the multiplication table for {1,i,-i,-1} where i = sqrt(-1), A152680(n) is isomorphic with -1, A002314(n) with i or -i and A152676(n) vice versa -i or i. %C A152676 1, A002314(n), A152676(n), A152680(n) are a subfield of the Galois Field [A002144(n)]. %C A152676 Let p = A002144(n), the n-th prime of the form 4k+1. Then a(n) and A002314(n) are the two square roots of -1 (mod p). Note that a(n) is also the multiplicative inverse of A002314(n) (mod p). - _T. D. Noe_, Feb 18 2010 %H A152676 T. D. Noe, <a href="/A152676/b152676.txt">Table of n, a(n) for n = 1..1000</a> %H A152676 A. J. C. Cunningham, <a href="https://archive.org/details/binomialfactoris01cunn/page/1/mode/1up">Binomial Factorisations</a>, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, pp. 1-21. %t A152676 aa = {}; Do[If[Mod[Prime[n], 4] == 1, k = 1; While[ ! Mod[k^2 + 1, Prime[n]] == 0, k++ ]; AppendTo[aa, Prime[n] - k]], {n, 1, 200}]; aa %Y A152676 Cf. A002144, A002314, A152680. %K A152676 nonn %O A152676 1,1 %A A152676 _Artur Jasinski_, Dec 10 2008