This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152677 #35 Nov 28 2023 11:00:41 %S A152677 1,3,7,15,13,31,39,31,63,91,57,93,127,195,121,171,217,133,255,403,363, %T A152677 183,399,465,403,399,511,819,307,847,549,381,855,961,741,1209,931, %U A152677 1023,553,1651,921,781,1815,1281,1143,1093,1767,1953,871,2223,2821,993,1995 %N A152677 Subsequence of odd terms in A000203 (sum-of-divisors function sigma), in the order in which they occur and with repetitions. %C A152677 Equivalently: subsequence of A000203 (sigma) with indices equal to a square or twice a square (A028982). %C A152677 See A060657 for the set of odd values in the range of the sigma function, i.e., the list of odd values in ordered by increasing size and without repetitions. %H A152677 Amiram Eldar, <a href="/A152677/b152677.txt">Table of n, a(n) for n = 1..10000</a> %F A152677 a(n) = A000203(A028982(n)). - _R. J. Mathar_, Dec 12 2008 %F A152677 Sum_{k=1..n} a(k) ~ c * n^3, where c = (16-10*sqrt(2))*zeta(3)/Pi^2 = 0.226276... . - _Amiram Eldar_, Nov 28 2023 %t A152677 Select[DivisorSigma[1, Range[1000]], OddQ[#] &] (* _Giovanni Resta_, Jan 08 2020 *) %t A152677 With[{max = 1000}, DivisorSigma[1, Union[Range[Sqrt[max]]^2, 2*Range[Sqrt[max/2]]^2]]] (* _Amiram Eldar_, Nov 28 2023 *) %o A152677 (PARI) A152677_upto(lim)=apply(sigma,vecsort(concat(vector(sqrtint(lim\1), i, i^2), vector(sqrtint(lim\2), i, 2*i^2)))) \\ Gives [a(n) = sigma(k) with k = A028982(n) <= lim]. - _Charles R Greathouse IV_, Feb 15 2013, corrected by _M. F. Hasler_, Jan 08 2020 %o A152677 (Magma) [d:k in [1..1000]|IsOdd(d) where d is DivisorSigma(1,k)]; // _Marius A. Burtea_, Jan 09 2020 %Y A152677 Cf. A000203 (sigma = sum-of-divisors function), A152678 (even terms in A000203), A028982 (squares and twice the squares). %Y A152677 See A062700 and A023195 for the subsequence resp. subset of primes; A023194 for the indices of A000203 which yield these primes. %Y A152677 Cf. A002117. %K A152677 easy,nonn %O A152677 1,2 %A A152677 _Omar E. Pol_, Dec 10 2008 %E A152677 Extended by _R. J. Mathar_, Dec 12 2008 %E A152677 Edited and definition reworded by _M. F. Hasler_, Jan 08 2020