This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152722 #28 Jun 01 2025 17:00:34 %S A152722 -1,1,-1,7,-6,-1,11,-10,-6,-1,13,-12,-10,-6,-1,17,-16,-12,-10,-6,-1, %T A152722 19,-18,-16,-12,-10,-6,-1,23,-22,-18,-16,-12,-10,-6,-1,29,-28,-22,-18, %U A152722 -16,-12,-10,-6,-1,31,-30,-28,-22,-18,-16,-12,-10,-6,-1,37,-36,-30,-28,-22,-18,-16,-12,-10,-6,-1 %N A152722 Triangle read by rows: T(n,0) = prime(n+2), T(n,1) = 1 - T(n,0), T(n,k) = T(n-1,k-1), T(1,0) = 1 T(n,n) = -1. %H A152722 G. C. Greubel, <a href="/A152722/b152722.txt">Rows n = 0..50 of triangle, flattened</a> %F A152722 T(n,n) = -1, T(1,0) = 1, T(n,0) = prime(n+2), T(n,1) = 1 - prime(n+2), T(n,k) = T(n-1,k-1). - _G. C. Greubel_, Apr 07 2019 %e A152722 Triangle begins as: %e A152722 -1; %e A152722 1, -1; %e A152722 7, -6, -1; %e A152722 11, -10, -6, -1; %e A152722 13, -12, -10, -6, -1; %e A152722 17, -16, -12, -10, -6, -1; %e A152722 19, -18, -16, -12, -10, -6, -1; %e A152722 23, -22, -18, -16, -12, -10, -6, -1; %e A152722 29, -28, -22, -18, -16, -12, -10, -6, -1; %t A152722 T[n_, n_]:= -1; T[1, 0]:= 1; T[n_, 0]:= Prime[n+2]; T[n_, 1]:= 1 - Prime[n+2]; T[n_, k_]:= T[n-1, k-1]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Apr 07 2019 *) %o A152722 (PARI) {T(n,k) = if(k==n, -1, if(n==1 && k==0, 1, if(k==0, prime(n+2), if(k==1, 1-prime(n+2), T(n-1,k-1) ))))}; \\ _G. C. Greubel_, Apr 07 2019 %o A152722 (Sage) %o A152722 @CachedFunction %o A152722 def T(n,k): %o A152722 if k==n: return -1 %o A152722 elif n==1 and k==0: return 1 %o A152722 elif k==0: return nth_prime(n+2) %o A152722 elif k==1: return 1 - nth_prime(n+2) %o A152722 else: return T(n-1,k-1) %o A152722 [[T(n,k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Apr 07 2019 %Y A152722 Cf. A152568, A027293. %K A152722 sign,tabl,less,obsc %O A152722 0,4 %A A152722 _Roger L. Bagula_ and _Alexander R. Povolotsky_, Dec 11 2008 %E A152722 Edited by _G. C. Greubel_, Apr 07 2019