cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152730 a(n) + a(n+1) + a(n+2) = n^5, with a(1) = a(2) = 0.

This page as a plain text file.
%I A152730 #25 Jan 06 2024 00:59:41
%S A152730 0,0,1,31,211,782,2132,4862,9813,18093,31143,50764,79144,118924,
%T A152730 173225,245675,340475,462426,616956,810186,1048957,1340857,1694287,
%U A152730 2118488,2623568,3220568,3921489,4739319,5688099,6782950,8040100,9476950
%N A152730 a(n) + a(n+1) + a(n+2) = n^5, with a(1) = a(2) = 0.
%H A152730 G. C. Greubel, <a href="/A152730/b152730.txt">Table of n, a(n) for n = 1..5000</a>
%H A152730 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,11,-10,11,-10,5,-1).
%F A152730 G.f.: x^3*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1) / ((x-1)^6*(x^2 + x + 1)). - _Colin Barker_, Oct 28 2014
%e A152730 0 + 0 + 1 = 1^5; 0 + 1 + 31 = 2^5; 1 + 31 + 211 = 3^5; ...
%t A152730 k0=k1=0;lst={k0,k1};Do[kt=k1;k1=n^5-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,5!}];lst
%t A152730 LinearRecurrence[{5,-10,11,-10,11,-10,5,-1}, {0,0,1,31,211,782,2132, 4862}, 50] (* _G. C. Greubel_, Sep 01 2018 *)
%t A152730 CoefficientList[Series[x^2*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1) / ((x - 1)^6*(x^2 + x + 1)),{x, 0, 50}], x] (* _Stefano Spezia_, Sep 02 2018 *)
%o A152730 (PARI) concat([0,0], Vec(x^3*(x^4+26*x^3+66*x^2+26*x+1)/((x-1)^6*(x^2+x+1)) + O(x^100))) \\ _Colin Barker_, Oct 28 2014
%o A152730 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(x^4+26*x^3+66*x^2+26*x+1)/((x-1)^6*(x^2+x+1)))); // _G. C. Greubel_, Sep 01 2018
%Y A152730 Cf. A152728, A152729, A152725, A152726, A000212.
%K A152730 nonn,easy
%O A152730 1,4
%A A152730 _Vladimir Joseph Stephan Orlovsky_, Dec 11 2008