This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152742 #20 Sep 08 2022 08:45:39 %S A152742 0,13,52,117,208,325,468,637,832,1053,1300,1573,1872,2197,2548,2925, %T A152742 3328,3757,4212,4693,5200,5733,6292,6877,7488,8125,8788,9477,10192, %U A152742 10933,11700,12493,13312,14157,15028,15925,16848,17797,18772 %N A152742 13 times the squares: a(n) = 13*n^2. %H A152742 G. C. Greubel, <a href="/A152742/b152742.txt">Table of n, a(n) for n = 0..5000</a> %H A152742 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A152742 a(n) = 13*A000290(n). %F A152742 a(n) = a(n-1) +26*n -13 (with a(0)=0). - _Vincenzo Librandi_, Nov 26 2010 %F A152742 a(0)=0, a(1)=13, a(2)=52, a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - _Harvey P. Dale_, Feb 18 2015 %F A152742 From _G. C. Greubel_, Sep 01 2018:(Start) %F A152742 G.f.: 13*x*(1+x)/(1-x)^3. %F A152742 E.g.f.: 13*(1+x)*exp(x). (End) %F A152742 From _Amiram Eldar_, Feb 03 2021: (Start) %F A152742 Sum_{n>=1} 1/a(n) = Pi^2/78. %F A152742 Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/156. %F A152742 Product_{n>=1} (1 + 1/a(n)) = sqrt(13)*sinh(Pi/sqrt(13))/Pi. %F A152742 Product_{n>=1} (1 - 1/a(n)) = sqrt(13)*sin(Pi/sqrt(13))/Pi. (End) %t A152742 13*Range[0,40]^2 (* or *) LinearRecurrence[{3,-3,1},{0,13,52},40] (* _Harvey P. Dale_, Feb 18 2015 *) %o A152742 (PARI) a(n)=13*n^2 \\ _Charles R Greathouse IV_, Oct 07 2015 %o A152742 (Magma) [13*n^2: n in [0..50]]; // _G. C. Greubel_, Sep 01 2018 %Y A152742 Cf. A000290, A135453. %K A152742 easy,nonn %O A152742 0,2 %A A152742 _Omar E. Pol_, Dec 12 2008