This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152786 #37 Dec 23 2024 14:53:42 %S A152786 6,12,42,48,72,84,90,174,204,264,306,372,408,456,474,546,594,600,642, %T A152786 750,852,882,936,972,978,1038,1140,1212,1272,1386,1470,1512,1518,1584, %U A152786 1770,1836,1902,1980,1986,2130,2196,2256,2262,2316,2382,2652,2688,2718 %N A152786 Integers k such that (k^2)/2 is the arithmetic mean of a pair of twin primes. %C A152786 Square roots of A054735 where these are integer. %H A152786 Amiram Eldar, <a href="/A152786/b152786.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..4288 from Zak Seidov) %H A152786 Zak Seidov, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2010-August/005687.html">A152786 = 6*A037073: near-duplicates?</a>, seqfan list, Aug 20 2010. %F A152786 {n: n^2 = A054735(i), any i}. - _R. J. Mathar_, Dec 12 2008 %F A152786 a(n) = 6*A037073(n). [_Zak Seidov_, seqfan list, Aug 20 2010] [From _R. J. Mathar_, Sep 07 2010] %e A152786 6 is a term since (6^2)/2 = 18 = mean(17, 19). %e A152786 12 is a term since (12^2)/2 = 72 = mean(71,73). %e A152786 42 is a term since (42^2)/2 = 882 = mean(881,883). %p A152786 isa := n -> isprime(n) and isprime(n+2) and issqr(2*n+2): %p A152786 select(isa, [$4..1000000]): map(n -> sqrt(2*n+2), %); # _Peter Luschny_, Jan 05 2020 %t A152786 lst={};Do[p1=Prime[n];p2=Prime[n+1];If[p2-p1==2,e=(2*(p1+1))^(1/2);i=Floor[e]; If[e==i,AppendTo[lst,i]]],{n,3*9!}];lst %t A152786 (* Second program: *) %t A152786 Select[Map[Sqrt[2 #] &, Mean /@ Select[Partition[Prime@ Range[10^6], 2, 1], Subtract @@ # == -2 &]], IntegerQ] (* _Michael De Vlieger_, Feb 18 2018 *) %o A152786 (PARI) forstep(n=6,1e3,6,if(isprime(n^2/2-1)&&isprime(n^2/2+1),print1(n", "))) \\ _Charles R Greathouse IV_, Feb 01 2013 %o A152786 (Magma) [k:k in [2..2800 by 2]| IsPrime(k*k div 2 -1) and IsPrime(k*k div 2 +1)]; // _Marius A. Burtea_, Jan 01 2020 %Y A152786 Cf. A014574, A037073, A054735, A152788 (cubic version). %Y A152786 Subsequence of A074924. - _Zak Seidov_, Feb 01 2013 %K A152786 nonn %O A152786 1,1 %A A152786 _Vladimir Joseph Stephan Orlovsky_, Dec 12 2008 %E A152786 Edited by _R. J. Mathar_, Dec 12 2008