A152823 Largest divisor < n of n^2 + 1, a(1) = 1.
1, 1, 2, 1, 2, 1, 5, 5, 2, 1, 2, 5, 10, 1, 2, 1, 10, 13, 2, 1, 17, 5, 10, 1, 2, 1, 10, 5, 2, 17, 26, 25, 10, 13, 2, 1, 10, 17, 2, 1, 29, 5, 37, 13, 2, 29, 34, 5, 2, 41, 2, 5, 10, 1, 34, 1, 50, 5, 2, 13, 2, 5, 10, 17, 2, 1, 10, 37, 2, 29, 2, 61, 65, 1, 58, 53, 10, 5, 2, 37, 34, 25, 65, 1, 2, 13
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[1] = 1; a[n_] := Max[Select[Divisors[n^2 + 1], # < n &]]; Array[a, 100] (* Amiram Eldar, Sep 12 2019 *)
-
PARI
A152823(n)={ n=divisors(n^2+1); n[ #n\2] }
Formula
a(n) = 1 iff n^2 + 1 is prime (iff A147809(n)=0), which can only happen for n = 1 or even n.
Comments