This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152842 #23 Oct 22 2023 19:46:01 %S A152842 1,1,3,1,4,3,1,7,15,9,1,8,22,24,9,1,11,46,90,81,27,1,12,57,136,171, %T A152842 108,27,1,15,93,307,579,621,351,81,1,16,108,400,886,1200,972,432,81,1, %U A152842 19,156,724,2086,3858,4572,3348,1377,243,1,20,175,880,2810,5944,8430,7920 %N A152842 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,0,-1,0,0,0,0,0,0,...] DELTA [3,-2,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. %H A152842 Reinhard Zumkeller, <a href="/A152842/b152842.txt">Rows n = 0..125 of table, flattened</a> %F A152842 T(n,k) = T(n-1,k) + (2-(-1)^n)*T(n-1,k-1). %F A152842 Sum_{k=0..n} T(n,k) = A094015(n). %F A152842 T(n,n) = A108411(n+1). %F A152842 T(2n,n) = A069835(n). %F A152842 G.f.: (1+x+x*y)/(1-x^2-4*x^2*y-3*x^2*y^2). - _Philippe Deléham_ , Nov 09 2013 %F A152842 T(n,k) = T(n-2,k) + 4*T(n-2,k-1) + 3*T(n-2,k-2), T(0,0) = T(1,0) = 1, T(1,1) = 3, T(n,k) = 0 if k < 0 or if k > n. - _Philippe Deléham_, Nov 09 2013 %e A152842 The triangle T(n,k) begins: %e A152842 n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 %e A152842 0: 1 %e A152842 1: 1 3 %e A152842 2: 1 4 3 %e A152842 3: 1 7 15 9 %e A152842 4: 1 8 22 24 9 %e A152842 5: 1 11 46 90 81 27 %e A152842 6: 1 12 57 136 171 108 27 %e A152842 7: 1 15 93 307 579 621 351 81 %e A152842 8: 1 16 108 400 886 1200 972 432 81 %e A152842 9: 1 19 156 724 2086 3858 4572 3348 1377 243 %e A152842 10: 1 20 175 880 2810 5944 8430 7920 4725 1620 243 %e A152842 11: 1 23 235 1405 5450 14374 26262 33210 28485 15795 5103 729 %e A152842 12: 1 24 258 1640 6855 19824 40636 59472 61695 44280 20898 5832 729 %e A152842 ... reformatted and extended. - _Franck Maminirina Ramaharo_, Feb 28 2018 %o A152842 (Haskell) %o A152842 a152842 n k = a152842_tabl !! n !! k %o A152842 a152842_row n = a152842_tabl !! n %o A152842 a152842_tabl = map fst $ iterate f ([1], 3) where %o A152842 f (xs, z) = (zipWith (+) ([0] ++ map (* z) xs) (xs ++ [0]), 4 - z) %o A152842 -- _Reinhard Zumkeller_, May 01 2014 %Y A152842 Cf. A152815, A007318, A064861. %K A152842 nonn,tabl %O A152842 0,3 %A A152842 _Philippe Deléham_, Dec 14 2008