cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152886 Number of descents beginning and ending with an even number in all permutations of {1,2,...,n}.

This page as a plain text file.
%I A152886 #16 Jan 22 2023 02:36:55
%S A152886 0,0,0,6,24,360,2160,30240,241920,3628800,36288000,598752000,
%T A152886 7185024000,130767436800,1830744115200,36614882304000,585838116864000,
%U A152886 12804747411456000,230485453406208000,5474029518397440000,109480590367948800000,2810001819444019200000
%N A152886 Number of descents beginning and ending with an even number in all permutations of {1,2,...,n}.
%F A152886 a(2n) = (2n-1)!*binomial(n,2); a(2n+1) = (2n)!*binomial(n,2).
%F A152886 D-finite with recurrence +(-n+4)*a(n) +(n-1)*a(n-1) +(n-2)*(n-1)^2*a(n-2)=0. - _R. J. Mathar_, Jul 31 2022
%F A152886 Sum_{n>=4} 1/a(n) = 2*(CoshIntegral(1) - gamma - 3*e + 8) = 2*(A099284 - A001620 - 3 * A001113 + 8). - _Amiram Eldar_, Jan 22 2023
%e A152886 a(7) = 2160 because (i) the descent pairs can be chosen in binomial(3,2) = 3 ways, namely (4,2), (6,2), (6,4); (ii) they can be placed in 6 positions, namely (1,2),(2,3),(3,4),(4,5),(5,6),(6,7); (iii) the remaining 5 entries can be permuted in 5! = 120 ways; 3*6*120 = 2160.
%p A152886 a := proc (n) if `mod`(n, 2) = 0 then factorial(n-1)*binomial((1/2)*n, 2) else factorial(n-1)*binomial((1/2)*n-1/2, 2) end if end proc: seq(a(n), n = 1 .. 22);
%t A152886 a[n_] := (n - 1)! * Binomial[If[OddQ[n], (n - 1)/2, n/2], 2]; Array[a, 25] (* _Amiram Eldar_, Jan 22 2023 *)
%Y A152886 Cf. A152885, A152887.
%Y A152886 Cf. A001113, A001620, A099284.
%K A152886 nonn
%O A152886 1,4
%A A152886 _Emeric Deutsch_, Jan 19 2009