cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152887 Number of descents beginning with an even number and ending with an odd number in all permutations of {1,2,...,n}.

This page as a plain text file.
%I A152887 #31 Jan 22 2023 02:37:15
%S A152887 0,1,2,18,72,720,4320,50400,403200,5443200,54432000,838252800,
%T A152887 10059033600,174356582400,2440992153600,47076277248000,
%U A152887 753220435968000,16005934264320000,288106816757760000,6690480522485760000,133809610449715200000,3372002183332823040000
%N A152887 Number of descents beginning with an even number and ending with an odd number in all permutations of {1,2,...,n}.
%C A152887 a(n) is the number of ways to perform the following:  Divide the set {1,2,...,n} into three pairwise disjoint subsets, A,B,C so that A union B union C = {1,2,...,n}.  Let A contain an odd number of elements and B contain an even number of elements.  Linearly order the elements within each subset. - _Geoffrey Critzer_, Sep 26 2011
%D A152887 Miklos Bona, A Walk Through Combinatorics, World Scientific Publishing Co., 2002, page 170.
%H A152887 Vincenzo Librandi, <a href="/A152887/b152887.txt">Table of n, a(n) for n = 1..400</a>
%F A152887 a(2n) = (2n-1)!*C(n+1,2);  a(2n+1) = (2n)!*C(n+1,2).
%F A152887 E.g.f.: x/((1-x^2)^2*(1-x)). - _Geoffrey Critzer_, Mar 03 2010
%F A152887 a(n) = (n-1)!*(2*n*(n+1)+(2*n+1)*(-1)^n-1)/16. - _Bruno Berselli_, Nov 07 2011
%F A152887 D-finite with recurrence a(n) -2*a(n-1) +(-n^2+2)*a(n-2) +n*(n-3)*a(n-3)=0. - _R. J. Mathar_, Jul 26 2022
%F A152887 Sum_{n>=2} 1/a(n) = 4*(CoshIntegral(1) - gamma - 1/e) + 2 = 4*(A099284 - A001620 - A068985) + 2. - _Amiram Eldar_, Jan 22 2023
%e A152887 a(8) = 50400 because (i) the descent pairs can be chosen in 1+2+3+4 = 10 ways, namely (2,1), (4,1), (4,3), (6,1), (6,3), (6,5), (8,1), (8,3), (8,5), (8,7); (ii) they can be placed in 7 positions, namely (1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8); (iii) the remaining 6 entries can be permuted in 6! = 720 ways; 10*7*720 = 50400.
%p A152887 a := proc (n) if `mod`(n, 2) = 0 then factorial(n-1)*binomial((1/2)*n+1, 2) else factorial(n-1)*binomial((1/2)*n+1/2, 2) end if end proc: seq(a(n), n = 1 .. 22);
%t A152887 CoefficientList[Series[x/((1 - x) (1 - x^2)^2), {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* _Geoffrey Critzer_, Mar 03 2010 *)
%o A152887 (Magma) [Factorial(n-1)*(2*n*(n+1)+(2*n+1)*(-1)^n-1)/16: n in [1..20]]; // _Bruno Berselli_, Nov 07 2011
%Y A152887 Cf. A152885, A152886.
%Y A152887 Cf. A001620, A068985, A099284.
%K A152887 nonn
%O A152887 1,3
%A A152887 _Emeric Deutsch_, Jan 19 2009