cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152892 Period 5: repeat [0, 3, 1, 0, 1].

This page as a plain text file.
%I A152892 #24 Dec 12 2023 08:06:50
%S A152892 0,3,1,0,1,0,3,1,0,1,0,3,1,0,1,0,3,1,0,1,0,3,1,0,1,0,3,1,0,1,0,3,1,0,
%T A152892 1,0,3,1,0,1,0,3,1,0,1,0,3,1,0,1,0,3,1,0,1,0,3,1,0,1,0,3,1,0,1,0,3,1,
%U A152892 0,1,0,3,1,0,1,0,3,1,0,1,0,3,1,0,1,0,3,1,0,1,0,3,1,0,1,0,3,1,0,1,0,3,1,0,1
%N A152892 Period 5: repeat [0, 3, 1, 0, 1].
%H A152892 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1).
%F A152892 a(n+5) = a(n) with a(0) = a(3) = 0, a(1) = 3 and a(2) = a(4) = 1.
%F A152892 O.g.f: ((3*z+z^2+z^4)/(1-z^5)).
%F A152892 a(n) = 1 + (-1/2 + (3/10)*sqrt(5))*cos(2*n*Pi/5) + ((1/5)*sqrt(2)*sqrt(5 + sqrt(5)) + (1/10)*sqrt(2)*sqrt(5 - sqrt(5)))*sin(2*n*Pi/5) + (-1/2 - (3/10)*sqrt(5))*cos(4*n*Pi/5) + (-(1/10)*sqrt(2)*sqrt(5 + sqrt(5)) + (1/5)*sqrt(2)*sqrt(5-sqrt(5)))*sin(4*n*Pi/5).
%F A152892 a(n) = (n^3 + 2*n^2) mod 5. - _Gary Detlefs_, Mar 20 2010
%p A152892 seq((n^3+2*n^2)mod 5,n=0..50); # _Gary Detlefs_, Mar 20 2010
%t A152892 PadRight[{},120,{0,3,1,0,1}] (* _Harvey P. Dale_, Oct 04 2016 *)
%Y A152892 Cf. A026053, A026068.
%K A152892 easy,nonn
%O A152892 0,2
%A A152892 _Richard Choulet_, Dec 14 2008