A152904 Triangle read by rows: T(n,k) = A008683(n-k+1); 1<=k<=n; mu(n) "decrescendo".
1, -1, 1, -1, -1, 1, 0, -1, -1, 1, -1, 0, -1, -1, 1, 1, -1, 0, -1, -1, 1, -1, 1, -1, 0, -1, -1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, 0, -1, 1, -1, 0, -1, -1, 1, 1, 0, 0, -1, 1, -1, 0, -1, -1, 1, -1, 1, 0, 0, -1, 1, -1, 0, -1, -1, 1
Offset: 1
Examples
Triangle begins 1; -1, 1; -1, -1, 1; 0, -1, -1, 1; -1, 0, -1, -1, 1; 1, -1, 0, -1, -1, 1; -1, 1, -1, 0, -1, -1, 1; 0, -1, 1, -1, 0, -1, -1, 1; 0, 0, -1, 1, -1, 0, -1, -1, 1; ... Production matrix begins -1, 1, -2, 0, 1, -3, 0, 0, 1, -6, 0, 0, 0, 1, -9, 0, 0, 0, 0, 1, -17, 0, 0, 0, 0, 0, 1, -28, 0, 0, 0, 0, 0, 0, 1, -50, 0, 0, 0, 0, 0, 0, 0, 1, -83, 0, 0, 0, 0, 0, 0, 0, 0, 1, -147, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ... where first column is -A073776(n+1). - _Paul Barry_, Feb 10 2011
Links
- E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.