This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152913 #23 Sep 29 2023 12:11:36 %S A152913 17,97,337,881,3697,10657,16561,49297,66977,89041,149057,847601, %T A152913 988417,1146097,1972097,2522257,2836961,3553777,3959297,4398577, %U A152913 5385761,7166897,11073217,17653681,32530177,41532497,44048497,55272097,61627201 %N A152913 Primes of the form n^4 + (n+1)^4. %C A152913 Also primes in A008514. %C A152913 Sequence is disjoint to A005385: If n^4 + (n+1)^4 is a prime p, then (p-1)/2 = n^4 + 2*n^3 + 3*n^2 + 2*n. (p-1)/2 = 8 for n = 1 and (p-1)/2 is divisible by n for n > 1. In each case, (p-1)/2 is not prime. %H A152913 Vincenzo Librandi, <a href="/A152913/b152913.txt">Table of n, a(n) for n = 1..5000</a> %e A152913 For n=3, n^4 + (n+1)^4 = 337 is prime and (337-1)/2 = 168 = 3*56 is not prime. %t A152913 f[n_]:=n^4+(n+1)^4;lst={};Do[a=f[n];If[PrimeQ[a],AppendTo[lst,a]],{n,0,6!}];lst (* _Vladimir Joseph Stephan Orlovsky_, May 30 2009 *) %t A152913 Select[Table[n^4+(n+1)^4,{n,0,700}],PrimeQ] %t A152913 Select[Total/@Partition[Range[100]^4,2,1],PrimeQ] (* _Harvey P. Dale_, Sep 29 2023 *) %o A152913 (Magma) [ a: n in [1..80] | IsPrime(a) where a is n^4+(n+1)^4 ]; %Y A152913 Cf. A155211, A008514. %K A152913 nonn,easy %O A152913 1,1 %A A152913 _Vincenzo Librandi_, Dec 15 2008 %E A152913 Edited and extended by _Klaus Brockhaus_, Dec 21 2008