This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A152927 #19 Jul 03 2023 10:45:20 %S A152927 7,113,1815,29153,468263,7521361,120810039,1940481985,31168521799, %T A152927 500636830769 %N A152927 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of k 4-gonal polygonal components chained with string components of length 1 as k varies. %H A152927 S. Schlicker, L. Morales, and D. Schultheis, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Schlicker/schlicker.html">Polygonal chain sequences in the space of compact sets</a>, JIS 12 (2009) 09.1.7. %H A152927 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (16, 1). %F A152927 Conjectures from _Colin Barker_, Jul 09 2020: (Start) %F A152927 G.f.: x*(7 + x) / (1 - 16*x - x^2). %F A152927 a(n) = 16*a(n-1) + a(n-2) for n>2. %F A152927 (End) %p A152927 with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, m, l: m:=2: l:=1: F := n -> fibonacci(n): L := n -> fibonacci(n-1)+fibonacci(n+1): aa := (m, l) -> L(2*m)*F(l-2)+F(2*m+2)*F(l-1): b := (m, l) -> L(2*m)*F(l-1)+F(2*m+2)*F(l): c := (m, l) -> F(2*m+2)*F(l-2)+F(m+2)^2*F(l-1): d := (m, l) -> F(2*m+2)*F(l-1)+F(m+2)^2*F(l): lambda := (m,l) -> (d(m, l)+aa(m, l)+sqrt((d(m, l)-aa(m, l))^2+4*b(m, l)*c(m, l)))*(1/2): delta := (m,l) -> (d(m, l)+aa(m, l)-sqrt((d(m, l)-aa(m, l))^2+4*b(m, l)*c(m, l)))*(1/2): R := (m,l) -> ((lambda(m, l)-d(m, l))*L(2*m)+b(m, l)*F(2*m+2))/(2*lambda(m, l)-d(m, l)-aa(m, l)): S := (m,l) -> ((lambda(m, l)-aa(m, l))*L(2*m)-b(m, l)*F(2*m+2))/(2*lambda(m, l)-d(m, l)-aa(m, l)): simplify(R(m, l)*lambda(m, l)^(n-1)+S(m, l)*delta(m, l)^(n-1)); end proc; %Y A152927 Cf. A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152935. %K A152927 nonn,more %O A152927 1,1 %A A152927 _Steven Schlicker_, Dec 15 2008