cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152928 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of two m-gonal polygonal components chained with string components of length 1 as m varies.

This page as a plain text file.
%I A152928 #21 Jul 22 2024 15:18:34
%S A152928 113,765,5234,35865,245813,1684818,11547905,79150509,542505650,
%T A152928 3718389033,25486217573,174685133970,1197309720209,8206482907485,
%U A152928 56248070632178,385530011517753,2642462009992085,18111704058426834,124139466398995745,850864560734543373
%N A152928 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of two m-gonal polygonal components chained with string components of length 1 as m varies.
%H A152928 Colin Barker, <a href="/A152928/b152928.txt">Table of n, a(n) for n = 2..1000</a>
%H A152928 S. Schlicker, L. Morales, and D. Schultheis, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Schlicker/schlicker.html">Polygonal chain sequences in the space of compact sets</a>, J. Integer Seq. 12 (2009), no. 1, Article 09.1.7, 23 pp.
%H A152928 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-8,1).
%F A152928 G.f.: x^2*(113 - 139*x + 18*x^2)/(1 - 8*x + 8*x^2 - x^3). - _M. F. Hasler_, Apr 16 2015
%F A152928 a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>4. - _Colin Barker_, Aug 05 2020
%p A152928 with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, Q, F, L:  F := fibonacci: L := t -> fibonacci(t-1)+fibonacci(t+1): aa := L(2*n)*F(l-2)+F(2*n+2)*F(l-1): b := L(2*n)*F(l-1)+F(2*n+2)*F(l): c :=  F(2*n+2)*F(l-2)+F(n+2)^2*F(l-1): d := F(2*n+2)*F(l-1)+F(n+2)^2*F(l): Q:=sqrt((d-aa)^2+4*b*c); lambda := (d+aa+Q)/2: delta := (d+aa-Q)/2: : simplify(lambda*((lambda-d)*L(2*n)+b*F(2*n+2))/Q+delta*((lambda-aa)*L(2*n)-b*F(2*n+2))/Q); end proc; # Simplified by _M. F. Hasler_, Apr 16 2015
%t A152928 LinearRecurrence[{8, -8, 1}, {113, 765, 5234}, 30] (* _Paolo Xausa_, Jul 22 2024 *)
%o A152928 (PARI) Vec(x^2*(113 - 139*x + 18*x^2) / ((1 - x)*(1 - 7*x + x^2)) + O(x^20)) \\ _Colin Barker_, Aug 05 2020
%Y A152928 Cf. A152927, A152929, A152930, A152931, A152932, A152933, A152934, A152935.
%K A152928 nonn,easy
%O A152928 2,1
%A A152928 _Steven Schlicker_, Dec 15 2008
%E A152928 More terms from _M. F. Hasler_, Apr 16 2015