cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152929 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of two 4-gonal polygonal components chained with string components of length l as l varies.

This page as a plain text file.
%I A152929 #37 Jul 23 2024 14:57:46
%S A152929 113,176,289,465,754,1219,1973,3192,5165,8357,13522,21879,35401,57280,
%T A152929 92681,149961,242642,392603,635245,1027848,1663093,2690941,4354034,
%U A152929 7044975,11399009,18443984,29842993,48286977,78129970,126416947,204546917,330963864,535510781,866474645
%N A152929 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of two 4-gonal polygonal components chained with string components of length l as l varies.
%H A152929 Colin Barker, <a href="/A152929/b152929.txt">Table of n, a(n) for n = 1..1000</a>
%H A152929 S. Schlicker, L. Morales, and D. Schultheis, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Schlicker/schlicker.html">Polygonal chain sequences in the space of compact sets</a>, J. Integer Seq. 12 (2009), no. 1, Article 09.1.7, 23 pp.
%H A152929 P. E. Weidmann, <a href="http://worldwidemann.com/the-sequencer-oeis-survey/#a152929httpoeisorga152929">The OEIS Sequencer survey</a>, Apr 11 2015.
%H A152929 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).
%F A152929 a(n) = (163*A000045(n)+63*A000032(n))/2. - Conjectured by _Philipp Emanuel Weidmann_, cf. LINKS.
%F A152929 G.f.: x*(113 + 63*x)/(1 - x - x^2). - _M. F. Hasler_, Apr 16 2015
%F A152929 a(n) = a(n-1) + a(n-2) for n>2. - _Colin Barker_, Aug 05 2020
%F A152929 a(n) = Lucas(n+9) - Fibonacci(n+6) - Fibonacci(n-5). - _Greg Dresden_, Mar 14 2022
%p A152929 with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L4, Q: F := fibonacci: L4 := F(3)+F(5): aa := L4*F(n-2)+F(6)*F(n-1): b := L4*F(n-1)+F(6)*F(n): c := F(6)*F(n-2)+F(4)^2*F(n-1): d := F(6)*F(n-1)+F(4)^2*F(n): Q := sqrt((d-aa)^2+4*b*c); lambda := (d+aa+Q)/2: delta := (d+aa-Q)/2: R := ((lambda-d)*L4+b*F(6))/Q: S := ((lambda-aa)*L4-b*F(6))/Q: simplify(R*lambda+S*delta); end proc: # Simplified by _M. F. Hasler_, Apr 16 2015
%t A152929 LinearRecurrence[{1, 1}, {113, 176}, 50] (* _Paolo Xausa_, Jul 23 2024 *)
%o A152929 (PARI) A152929(n)=50*fibonacci(n)+63*fibonacci(n+1) \\ _M. F. Hasler_, Apr 14 2015
%o A152929 (PARI) Vec(x*(113 + 63*x) / (1 - x - x^2) + O(x^30)) \\ _Colin Barker_, Aug 05 2020
%Y A152929 Cf. A000032, A000045.
%Y A152929 Cf. A152927, A152928, A152930, A152931, A152932, A152933, A152934, A152935.
%K A152929 nonn,easy
%O A152929 1,1
%A A152929 _Steven Schlicker_, Dec 15 2008
%E A152929 More terms from _M. F. Hasler_, Apr 16 2015