cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152930 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of k 4-gonal polygonal components chained with string components of length 2 as k varies.

This page as a plain text file.
%I A152930 #20 Jul 03 2023 10:48:55
%S A152930 7,176,4393,109649,2736832,68311151,1705041943,42557737424,
%T A152930 1062238393657,26513402104001,661772814206368,16517806953055199,
%U A152930 412283401012173607,10290567218351284976,256851897057769950793,6411006859225897484849,160018319583589667170432
%N A152930 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of k 4-gonal polygonal components chained with string components of length 2 as k varies.
%H A152930 S. Schlicker, L. Morales, and D. Schultheis, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Schlicker/schlicker.html">Polygonal chain sequences in the space of compact sets</a>, JIS 12 (2009) 09.1.7.
%H A152930 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (25, -1).
%F A152930 Conjectures from _Colin Barker_, Jul 09 2020: (Start)
%F A152930 G.f.: x*(7 + x) / (1 - 25*x + x^2).
%F A152930 a(n) = 25*a(n-1) - a(n-2) for n>1.
%F A152930 (End)
%p A152930 with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, m, l: m:=2: l:=2: F := n -> fibonacci(n): L := n -> fibonacci(n-1)+fibonacci(n+1): aa := (m, l) -> L(2*m)*F(l-2)+F(2*m+2)*F(l-1): b := (m, l) -> L(2*m)*F(l-1)+F(2*m+2)*F(l): c := (m, l) -> F(2*m+2)*F(l-2)+F(m+2)^2*F(l-1): d := (m, l) -> F(2*m+2)*F(l-1)+F(m+2)^2*F(l): lambda := (m,l) -> (d(m, l)+aa(m, l)+sqrt((d(m, l)-aa(m, l))^2+4*b(m, l)*c(m, l)))*(1/2): delta := (m,l) -> (d(m, l)+aa(m, l)-sqrt((d(m, l)-aa(m, l))^2+4*b(m, l)*c(m, l)))*(1/2): R := (m,l) -> ((lambda(m, l)-d(m, l))*L(2*m)+b(m, l)*F(2*m+2))/(2*lambda(m, l)-d(m, l)-aa(m, l)): S := (m,l) -> ((lambda(m, l)-aa(m, l))*L(2*m)-b(m, l)*F(2*m+2))/(2*lambda(m, l)-d(m, l)-aa(m, l)): simplify(R(m, l)*lambda(m, l)^(n-1)+S(m, l)*delta(m, l)^(n-1)); end proc;
%Y A152930 Cf. A152927, A152928, A152929, A152931, A152932, A152933, A152934, A152935.
%K A152930 nonn
%O A152930 1,1
%A A152930 _Steven Schlicker_, Dec 15 2008