cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152931 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of three m-gonal polygonal components chained with string components of length 2 as m varies.

This page as a plain text file.
%I A152931 #17 Feb 21 2025 22:33:36
%S A152931 4393,80361,1425131,25671393,459934921,8258011407,148150698209,
%T A152931 2658683875329,47706585218947,856070631915129,15361490875216193,
%U A152931 275651271699299271,4946357927482614361,88758815221749418713,1592712152944203460571,28580061055811939151057
%N A152931 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of three m-gonal polygonal components chained with string components of length 2 as m varies.
%H A152931 S. Schlicker, L. Morales, and D. Schultheis, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Schlicker/schlicker.html">Polygonal chain sequences in the space of compact sets</a>, JIS 12 (2009) 09.1.7.
%H A152931 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (13, 104, -260, -260, 104, 13, -1).
%p A152931 with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, k, l: k:=3: l:=2: F := t -> fibonacci(t): L := t -> fibonacci(t-1)+fibonacci(t+1): aa := (n, l) -> L(2*n)*F(l-2)+F(2*n+2)*F(l-1): b := (n, l) -> L(2*n)*F(l-1)+F(2*n+2)*F(l): c := (n, l) -> F(2*n+2)*F(l-2)+F(n+2)^2*F(l-1): d := (n, l) -> F(2*n+2)*F(l-1)+F(n+2)^2*F(l): lambda := (n,l) -> (d(n, l)+aa(n, l)+sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): delta := (n,l) -> (d(n, l)+aa(n, l)-sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): R := (n,l) -> ((lambda(n, l)-d(n, l))*L(2*n)+b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): S := (n,l) -> ((lambda(n, l)-aa(n, l))*L(2*n)-b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): simplify(R(n, l)*lambda(n, l)^(k-1)+S(n, l)*delta(n, l)^(k-1)); end proc;
%t A152931 LinearRecurrence[{13,104,-260,-260,104,13,-1},{4393,80361,1425131,25671393,459934921,8258011407,148150698209},20] (* _Harvey P. Dale_, Feb 18 2024 *)
%Y A152931 Cf. A152927, A152928, A152929, A152930, A152932, A152933, A152934, A152935.
%K A152931 nonn,easy
%O A152931 2,1
%A A152931 _Steven Schlicker_, Dec 15 2008