cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152933 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of k 6-gonal polygonal components chained with string components of length 2 as k varies.

This page as a plain text file.
%I A152933 #16 Jul 03 2023 10:52:47
%S A152933 18,1197,80361,5394960,362185569,24314987763,1632363850242,
%T A152933 109587212856081,7357034536009605,493907598828348264,
%U A152933 33158022432323420133,2226032671355124283287,149442611182684237761426,10032689243282040048565125,673535162800540841393716209
%N A152933 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of k 6-gonal polygonal components chained with string components of length 2 as k varies.
%H A152933 S. Schlicker, L. Morales, and D. Schultheis, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Schlicker/schlicker.html">Polygonal chain sequences in the space of compact sets</a>, J. Integer Seq. 12 (2009), no. 1, Article 09.1.7, 23 pp.
%H A152933 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (67, 9).
%F A152933 Conjectures from _Colin Barker_, Jul 09 2020: (Start)
%F A152933 G.f.: 9*x*(2 - x) / (1 - 67*x - 9*x^2).
%F A152933 a(n) = 67*a(n-1) + 9*a(n-2) for n>2.
%F A152933 (End)
%p A152933 with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, m, l: m:=3: l:=2: F := n -> fibonacci(n): L := n -> fibonacci(n-1)+fibonacci(n+1): aa := (m, l) -> L(2*m)*F(l-2)+F(2*m+2)*F(l-1): b := (m, l) -> L(2*m)*F(l-1)+F(2*m+2)*F(l): c := (m, l) -> F(2*m+2)*F(l-2)+F(m+2)^2*F(l-1): d := (m, l) -> F(2*m+2)*F(l-1)+F(m+2)^2*F(l): lambda := (m,l) -> (d(m, l)+aa(m, l)+sqrt((d(m, l)-aa(m, l))^2+4*b(m, l)*c(m, l)))*(1/2): delta := (m,l) -> (d(m, l)+aa(m, l)-sqrt((d(m, l)-aa(m, l))^2+4*b(m, l)*c(m, l)))*(1/2): R := (m,l) -> ((lambda(m, l)-d(m, l))*L(2*m)+b(m, l)*F(2*m+2))/(2*lambda(m, l)-d(m, l)-aa(m, l)): S := (m,l) -> ((lambda(m, l)-aa(m, l))*L(2*m)-b(m, l)*F(2*m+2))/(2*lambda(m, l)-d(m, l)-aa(m, l)): simplify(R(m, l)*lambda(m, l)^(n-1)+S(m, l)*delta(m, l)^(n-1)); end proc;
%Y A152933 Cf. A152927, A152928, A152929, A152930, A152931, A152932, A152934, A152935.
%K A152933 nonn
%O A152933 1,1
%A A152933 _Steven Schlicker_, Dec 15 2008