cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152934 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of two m-gonal polygonal components chained with string components of length 3 as m varies.

This page as a plain text file.
%I A152934 #21 Jul 03 2023 10:54:04
%S A152934 289,1962,13429,92025,630730,4323069,29630737,203092074,1392013765,
%T A152934 9541004265,65395016074,448224108237,3072173741569,21056992082730,
%U A152934 144326770837525,989230403779929,6780286055621962,46472771985573789,318529117843394545,2183231052918188010
%N A152934 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of two m-gonal polygonal components chained with string components of length 3 as m varies.
%H A152934 S. Schlicker, L. Morales, and D. Schultheis, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Schlicker/schlicker.html">Polygonal chain sequences in the space of compact sets</a>, J. Integer Seq. 12 (2009), no. 1, Article 09.1.7, 23 pp.
%H A152934 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8, -8, 1).
%F A152934 Conjectures from _Colin Barker_, Jul 09 2020: (Start)
%F A152934 G.f.: x^2*(289 - 350*x + 45*x^2) / ((1 - x)*(1 - 7*x + x^2)).
%F A152934 a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>4.
%F A152934 (End)
%p A152934 with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, k, l: k:=2: l:=3: F := t -> fibonacci(t): L := t -> fibonacci(t-1)+fibonacci(t+1): aa := (n, l) -> L(2*n)*F(l-2)+F(2*n+2)*F(l-1): b := (n, l) -> L(2*n)*F(l-1)+F(2*n+2)*F(l): c := (n, l) -> F(2*n+2)*F(l-2)+F(n+2)^2*F(l-1): d := (n, l) -> F(2*n+2)*F(l-1)+F(n+2)^2*F(l): lambda := (n,l) -> (d(n, l)+aa(n, l)+sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): delta := (n,l) -> (d(n, l)+aa(n, l)-sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): R := (n,l) -> ((lambda(n, l)-d(n, l))*L(2*n)+b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): S := (n,l) -> ((lambda(n, l)-aa(n, l))*L(2*n)-b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): simplify(R(n, l)*lambda(n, l)^(k-1)+S(n, l)*delta(n, l)^(k-1)); end proc;
%Y A152934 Cf. A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152935.
%K A152934 nonn
%O A152934 2,1
%A A152934 _Steven Schlicker_, Dec 15 2008