A152978 a(n) = A139251(n+2)/4 = A152968(n+1)/2.
1, 1, 1, 2, 3, 2, 1, 2, 3, 3, 4, 7, 8, 4, 1, 2, 3, 3, 4, 7, 8, 5, 4, 7, 9, 10, 15, 22, 20, 8, 1, 2, 3, 3, 4, 7, 8, 5, 4, 7, 9, 10, 15, 22, 20, 9, 4, 7, 9, 10, 15, 22, 21, 14, 15, 23, 28, 35, 52, 64, 48, 16, 1, 2, 3, 3, 4, 7, 8, 5, 4, 7, 9, 10, 15, 22, 20, 9, 4, 7, 9, 10, 15, 22, 21, 14, 15, 23
Offset: 1
Examples
If written as a triangle, begins: .1,1; .1,2,3,2; .1,2,3,3,4,7,8,4; .1,2,3,3,4,7,8,5,4,7,9,10,15,22,20,8; .... Rows converge to A152980. It appears that row sums give A004171. [From _Omar E. Pol_, May 25 2010]
Links
- David Applegate, The movie version
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Crossrefs
Formula
G.f.: (1+x)*(Prod(1+x^(2^k-1)+2*x^(2^k),k=1..oo)-1)/(1+2*x). - N. J. A. Sloane, May 20 2009
Extensions
More terms from Omar E. Pol, Jul 26 2009
Comments