cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152990 Sum of proper divisors minus the number of proper divisors of Fibonacci number A000045(n).

This page as a plain text file.
%I A152990 #21 Sep 08 2022 08:45:39
%S A152990 0,0,0,0,0,4,0,8,17,14,0,245,0,40,499,542,0,2801,148,5316,6771,286,0,
%T A152990 110809,18032,752,124327,155934,0,1310617,2972,1213164,1821955,5166,
%U A152990 2697336,33280689,506376,1416024,32030851,106878198,62156,295708841,0
%N A152990 Sum of proper divisors minus the number of proper divisors of Fibonacci number A000045(n).
%C A152990 Note that if a(n) != 0 then Fibonacci number A000045(n) is a composite number (A002808), otherwise A000045(n) is a noncomposite number (A008578). See A152770.
%H A152990 Georg Fischer, <a href="/A152990/b152990.txt">Table of n, a(n) for n = 1..80</a> [first 78 terms from B. D. Swan]
%F A152990 a(n) = A000203(A000045(n)) - A000005(A000045(n)) - n + 1 = A001065(A000045(n)) - A032741(A000045(n)) = A152770(A000045(n)).
%e A152990 a(8)=8 because Fibonacci(8)=21, the proper divisors of 21 are 1,3 and 7; consequently, a(8) = 1 + 3 + 7 - 3 = 8. - _Emeric Deutsch_, Jan 02 2009
%p A152990 with(combinat): with(numtheory): seq(sigma(fibonacci(n))-fibonacci(n)-tau(fibonacci(n))+1, n = 1 .. 45); # _Emeric Deutsch_, Jan 02 2009
%o A152990 (Magma) [DivisorSigma(1,f)-f-DivisorSigma(0,f)+1 where f is Fibonacci(n):n in [1..43] ]; // _Marius A. Burtea_, Feb 18 2020
%Y A152990 Cf. A000005, A000045, A000203, A001065, A002808, A008578, A032741, A152770.
%K A152990 nonn
%O A152990 1,6
%A A152990 _Omar E. Pol_, Dec 20 2008
%E A152990 Extended by _Emeric Deutsch_, Jan 02 2009
%E A152990 a(79)-a(80) in b-file corrected by _Georg Fischer_, Feb 18 2020