This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153046 #10 Jun 02 2025 01:15:44 %S A153046 2,6,30,3150,6063750,1717605545906250,2623719141408662719128738281250, %T A153046 1019408754706474658106933474548666805595768826381331909476074218750 %N A153046 Multiplicative encoding of Losanitsch's triangle (A034851). %H A153046 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LosanitschsTriangle.html">Losanitsch's Triangle</a>. %F A153046 prime(k + 1)^(a(n, k)), where prime(k + 1) is the (k + 1)st prime number (A000040), n is a row number in Losanitsch's triangle and k is a column number (in both the numbering starts from 0) and a(n, k) is the value look-up function for Losanitsch's triangle. %e A153046 The fourth row of Losanitsch's triangle is 1, 2, 4, 2, 1 and the first five primes are 2, 3, 5, 7, 11, therefore the fourth term is 2^1 * 3^2 * 5^4 * 7^2 * 11^1 = 6063750. %t A153046 a[n_, 0] := 1; a[n_, n_] := 1; a[n_, k_] := a[n, k] = a[n - 1, k - 1] + a[n - 1, k] - Binomial[n/2 - 1, (k - 1)/2]Mod[k, 2]Mod[n - 1, 2]; (* The above comes from Weisstein's Mathematica notebook *) multEncLoz[n_] := Times @@ Table[Prime[k + 1]^a[n, k], {k, 0, n}]; Table[multEncLoz[n], {n, 0, 7}] %Y A153046 Cf. A007188 (multiplicative encoding of Pascal's triangle). %K A153046 nonn %O A153046 0,1 %A A153046 _Alonso del Arte_, Dec 17 2008