This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153071 #55 Feb 16 2025 08:33:09 %S A153071 9,6,8,9,4,6,1,4,6,2,5,9,3,6,9,3,8,0,4,8,3,6,3,4,8,4,5,8,4,6,9,1,8,6, %T A153071 0,0,0,6,9,5,4,0,2,6,7,6,8,3,9,0,9,6,1,5,4,4,2,0,1,6,8,1,5,7,4,3,9,4, %U A153071 9,8,4,1,1,7,0,8,0,3,3,1,3,6,7,3,9,5,9,4,0,7 %N A153071 Decimal expansion of L(3, chi4), where L(s, chi4) is the Dirichlet L-function for the non-principal character modulo 4. %D A153071 Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer-Verlag, 1989. See page 293, Entry 25 (iii). %D A153071 Leonhard Euler, Introductio in Analysin Infinitorum, First Part, Articles 175, 284 and 287. %D A153071 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20. %H A153071 J. T. Groenman, <a href="https://cms.math.ca/publications/crux/issue?volume=16&issue=2">Problem 1511</a>, Crux Mathematicorum, Vol. 16, No. 2 (1990), p. 43; <a href="https://cms.math.ca/publications/crux/issue?volume=17&issue=3">Solution to Problem 1511</a>, by Beatriz Margolis, ibid., Vol. 17, No. 3 (1991), pp. 92-93. %H A153071 Qing-Hu Hou and Zhi-Wei Sun, <a href="https://arxiv.org/abs/1808.04717">A q-analogue of the identity Sum_{k>=0}(-1)^k/(2k+1)^3 = Pi^3/32</a>, arXiv:1808.04717 [math.CO], 2018. %H A153071 Masato Kobayashi, <a href="https://arxiv.org/abs/2108.01247">Integral representations for zeta(3) with the inverse sine function</a>, arXiv:2108.01247 [math.NT], 2021. %H A153071 Richard J. Mathar, <a href="http://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and prime zeta modulo functions for small moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015, section 2.2 entry L(m=4,r=2,s=3). %H A153071 Michael Penn, <a href="https://www.youtube.com/watch?v=lY9SZpq9khM">An infinite tangent product</a>, YouTube video, 2020. %H A153071 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletBetaFunction.html">Dirichlet Beta Function</a>. %H A153071 Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_beta_function">Dirichlet beta function</a>. %H A153071 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %F A153071 chi4(k) = Kronecker(-4, k); chi4(k) is 0, 1, 0, -1 when k reduced modulo 4 is 0, 1, 2, 3, respectively; chi4 is A101455. %F A153071 Series: L(3, chi4) = Sum_{k>=1} chi4(k) k^{-3} = 1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 - 1/11^3 + 1/13^3 - 1/15^3 + ... %F A153071 Series: L(3, chi4) = Sum_{k>=0} tanh((2k+1) Pi/2)/(2k+1)^3. [Ramanujan; see Berndt, page 293] %F A153071 Closed form: L(3, chi4) = Pi^3/32 = 1/A331095. %F A153071 Equals Sum_{n>=0} (-1)^n/(2*n+1)^3. - _Jean-François Alcover_, Mar 29 2013 %F A153071 Equals Product_{k>=3} (1 - tan(Pi/2^k)^4) (Groenman, 1990). - _Amiram Eldar_, Apr 03 2022 %F A153071 Equals Integral_{x=0..1} arcsinh(x)*arccos(x)/x dx (Kobayashi, 2021). - _Amiram Eldar_, Jun 23 2023 %F A153071 From _Amiram Eldar_, Nov 06 2023: (Start) %F A153071 Equals beta(3), where beta is the Dirichlet beta function. %F A153071 Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^3)^(-1). (End) %e A153071 L(3, chi4) = Pi^3/32 = 0.9689461462593693804836348458469186... %t A153071 nmax = 1000; First[ RealDigits[Pi^3/32, 10, nmax] ] %o A153071 (PARI) Pi^3/32 \\ _Michel Marcus_, Aug 15 2018 %Y A153071 Cf. A101455, A153072, A153073, A153074. %Y A153071 Cf. A233091, A251809, A331095. %Y A153071 Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)). %K A153071 nonn,cons,easy %O A153071 0,1 %A A153071 _Stuart Clary_, Dec 17 2008 %E A153071 Offset corrected by _R. J. Mathar_, Feb 05 2009