cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153122 G.f.: 1/p(x) where p(x)=x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1.

This page as a plain text file.
%I A153122 #13 Feb 16 2025 08:33:09
%S A153122 1,-2,6,-15,38,-95,237,-590,1468,-3651,9079,-22575,56131,-139563,
%T A153122 347004,-862774,2145156,-5333599,13261165,-32971820,81979285,
%U A153122 -203828691,506788203,-1260049698,3132916721,-7789507968,19367394583,-48154000782
%N A153122 G.f.: 1/p(x) where p(x)=x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1.
%C A153122 a(n)/a(n-1) tends to the approximation to Feigenbaum's constant mentioned in A103546. = 2.48634376497....;.
%H A153122 Weisstein, Eric W. <a href="https://mathworld.wolfram.com/FeigenbaumConstant.html">Feigenbaum Constant</a>.  Equation (11).
%H A153122 <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (-2,2,1,-2,1).
%F A153122 p(x)=x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1; a(n)=coefficient_expansion(1/(x^5*p(1/x))).
%t A153122 f[x_] = x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1;
%t A153122 g[x] = ExpandAll[x^5*f[1/x]]'
%t A153122 a = Table[SeriesCoefficient[Series[1/g[x], {x, 0, 50}], n], {n, 0, 50}]
%Y A153122 Cf. A103546.
%K A153122 sign,easy
%O A153122 0,2
%A A153122 _Roger L. Bagula_ and _Gary W. Adamson_, Dec 18 2008
%E A153122 Edited by _N. J. A. Sloane_, Dec 19 2008