This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153125 #8 Sep 07 2012 12:10:39 %S A153125 1,2,4,3,6,9,4,7,10,12,5,8,11,14,17,6,9,12,15,18,20,7,10,13,16,19,22, %T A153125 25,8,11,14,17,20,23,26,28,9,12,15,18,21,24,27,30,33,10,13,16,19,22, %U A153125 25,28,31,34,36,11,14,17,20,23,26,29,32,35,38,41,12,15,18,21,24,27,30,33,36 %N A153125 Triangle read by rows: T(n,k) = maximal number of squares that can be covered by a queen on an n X k chessboard, 1<=k<=n. %C A153125 Sums of rows give A153126; central terms give A016861; %C A153125 A047461(n) = T(n,n); %C A153125 T(n,2*k-1) = T(n-1,2*k-1) + 1 for 2*k-1<n. %F A153125 T(n,k) = n + 3*(k-1) - (1 - n Mod 2)*delta_{n,k}, 1<=k<=n; delta is the Kronecker symbol. %e A153125 Triangle T(n,k) begins: %e A153125 1; %e A153125 2, 4; %e A153125 3, 6, 9; %e A153125 4, 7, 10, 12; %e A153125 5, 8, 11, 14, 17; %e A153125 6, 9, 12, 15, 18, 20; %e A153125 7, 10, 13, 16, 19, 22, 25; %e A153125 8, 11, 14, 17, 20, 23, 26, 28; %t A153125 T[n_,k_]:=n+3*(k-1)-(1-Mod[n,2])*If[k==n,1,0]; %t A153125 Flatten[Table[Table[T[n,k],{k,1,n}],{n,1,20}]] %t A153125 (* From _Vaclav Kotesovec_, Sep 07 2012 *) %K A153125 nonn,tabl %O A153125 1,2 %A A153125 _Reinhard Zumkeller_, Dec 20 2008