This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153177 #24 Sep 08 2022 08:45:39 %S A153177 76,1926,109801,4769326,230701876,10716675201,505618944676, %T A153177 23714405408926,1114769987764201,52357935173823126, %U A153177 2459933168462154076,115560463558534156801,5428954301161174383676,255043991670277234750326 %N A153177 a(n) = L(9*n)/L(n) where L(n) = Lucas number A000204(n). %C A153177 All numbers in this sequence are: %C A153177 congruent to 1 mod 100 (iff n is congruent to 0 mod 3), %C A153177 congruent to 26 mod 100 (iff n is congruent to 2 or 4 mod 6), %C A153177 congruent to 76 mod 100 (iff n is congruent to 1 or 5 mod 6). %H A153177 G. C. Greubel, <a href="/A153177/b153177.txt">Table of n, a(n) for n = 1..595</a> %H A153177 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (34,714,-4641,-12376,12376,4641,-714,-34,1). %F A153177 From _R. J. Mathar_, Oct 22 2010: (Start) %F A153177 a(n) = 34*a(n-1) +714*a(n-2) -4641*a(n-3) -12376*a(n-4) +12376*a(n-5) +4641*a(n-6) -714*a(n-7) -34*a(n-8) +a(n-9). %F A153177 G.f.: -x*(76-658*x-9947*x^2+13644*x^3+26020*x^4-5306*x^5-1372*x^6+42*x^7 +x^8) / ((x-1)*(x^2+18*x+1)*(x^2-47*x+1)*(x^2+3*x+1)*(x^2-7*x+1)). %F A153177 a(n) = 1-(-1)^n*A087215(n) -(-1)^n*A005248(n) +A056854(n) +A087265(n). (End) %t A153177 Table[LucasL[9*n]/LucasL[n], {n, 1, 50}] %t A153177 LinearRecurrence[{34,714,-4641,-12376,12376,4641,-714,-34,1},{76,1926,109801,4769326,230701876,10716675201,505618944676,23714405408926,1114769987764201},20] (* _Harvey P. Dale_, Aug 12 2012 *) %o A153177 (PARI) {lucas(n) = fibonacci(n+1) + fibonacci(n-1)}; %o A153177 for(n=0,30, print1( lucas(9*n)/lucas(n), ", ")) \\ _G. C. Greubel_, Dec 21 2017 %o A153177 (Magma) [Lucas(9*n)/Lucas(n): n in [0..30]]; // _G. C. Greubel_, Dec 21 2017 %Y A153177 Cf. A000032, A000204, A110391, A153173, A153175. %Y A153177 Cf. A153179, A153180. - _R. J. Mathar_, Oct 22 2010 %K A153177 nonn %O A153177 1,1 %A A153177 _Artur Jasinski_, Dec 20 2008