This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153189 #34 Sep 08 2022 08:45:39 %S A153189 1,1,2,1,3,15,1,4,28,280,1,5,45,585,9945,1,6,66,1056,22176,576576,1,7, %T A153189 91,1729,43225,1339975,49579075,1,8,120,2640,76560,2756160,118514880, %U A153189 5925744000,1,9,153,3825,126225,5175225,253586025,14454403425,939536222625 %N A153189 Triangle T(n,k) = Product_{j=0..k} n*j+1. %C A153189 Row sums are: {1, 3, 19, 313, 10581, 599881, 50964103, 6047094369, 954249517513, 193146844030201, 48762935887310811,...}. [Corrected by _M. F. Hasler_, Oct 28 2014] %C A153189 This is the lower left triangle of the array A142589. - _M. F. Hasler_, Oct 28 2014 %C A153189 Row n is a subset of the n-fold factorial sequence for k=0..n. For example, T(8,0..8) is A045755(1..9). These sequences are listed for n=0..10 in A256268. - _Georg Fischer_, Feb 15 2020 %H A153189 G. C. Greubel, <a href="/A153189/b153189.txt">Rows n = 0..100 of triangle, flattened</a> %F A153189 T(n, k) = n^(k+1)*Pochhammer(1/n, k+1). %F A153189 From _Vaclav Kotesovec_, Oct 10 2016: (Start) %F A153189 For fixed n > 0: %F A153189 T(n, k) ~ sqrt(2*Pi) * n^k * k^(k + 1/2 + 1/n) / (Gamma(1 + 1/n) * exp(k)). %F A153189 T(n, k) ~ k! * n^k * k^(1/n) / Gamma(1 + 1/n). %F A153189 (End) %F A153189 T(n, k) = Sum_{j=0..k+1} (-1)^(k-j+1)*Stirling1(k+1,j)*n^(k-j+1). - _G. C. Greubel_, Feb 17 2020 %F A153189 T(n, k) = ((1+n*k)*T(n, k-1) + (1+n*k)*(1+n*(k-1))*T(n, k-2))/2. - _Georg Fischer_, Feb 17 2020 %e A153189 Triangle begins as: %e A153189 1; %e A153189 1, 2; %e A153189 1, 3, 15; %e A153189 1, 4, 28, 280; %e A153189 1, 5, 45, 585, 9945; %e A153189 1, 6, 66, 1056, 22176, 576576; %e A153189 1, 7, 91, 1729, 43225, 1339975, 49579075; %e A153189 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000; %e A153189 1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625; %p A153189 seq(seq(mul(n*j+1, j=0..k), k=0..n), n=0..10); # _G. C. Greubel_, Feb 15 2020 %t A153189 T[n_, k_]= If[n==0 && k==0, 1, Product[n*j+1, {j,0,k}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 15 2020 *) %t A153189 T[n_, k_]:= T[n, k]= If[k<2, 1+k*n, ((1+n*k)*T[n, k-1] + (1+n*k)*(1+n*(k-1))* T[n, k-2])/2]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* _Georg Fischer_, Feb 17 2020 *) %o A153189 (PARI) T(n,k)=prod(j=0,k,n*j+1) \\ _M. F. Hasler_, Oct 28 2014 %o A153189 (Magma) [(&*[n*j+1: j in [0..k]]): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Feb 15 2020 %o A153189 (Sage) [[ product(n*j+1 for j in (0..k)) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Feb 15 2020 %Y A153189 Cf. A000165, A006882, A007661, A007662, A008544. %Y A153189 Cf. A000142 (row 2), A001147 (3), A007559 (4), A007696 (5), A008548 (6), A008542 (7), A045754 (8), A045755 (9), A045756 (10), A144773 (11), A256268 (combined table). %K A153189 nonn,tabl %O A153189 0,3 %A A153189 _Roger L. Bagula_, Dec 20 2008 %E A153189 Edited and row 0 added by _M. F. Hasler_, Oct 28 2014