This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153225 #10 Jan 30 2022 23:05:17 %S A153225 1,102,104,189,193,256,302,407,467,475,503,594,702,712,751,804,881, %T A153225 905,978,998,1005,1053,1104,1107,1154,1275,1303,1306,1307,1315,1421, %U A153225 1502,1600,1604,1690,1694,1706,1802,1860,1904,1907,1908,2006,2025,2105,2146,2208 %N A153225 Numbers k such that the string k modulo 100 is found at position k in the decimal digits of Pi. %H A153225 Michael S. Branicky, <a href="/A153225/b153225.txt">Table of n, a(n) for n = 1..10000</a> %e A153225 a(4) = 189 because 89 occurs at offset 189 after the decimal in the digits of Pi. %o A153225 (Python) %o A153225 from sympy import S %o A153225 # download https://stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt, then %o A153225 #with open('pi-billion.txt', 'r') as f: pi_digits = f.readline() %o A153225 pi_digits = str(S.Pi.n(3*10**5+2))[:-2] # alternative to above %o A153225 pi_digits = pi_digits.replace(".", "") %o A153225 def ispal(s): return s == s[::-1] %o A153225 def agen(): %o A153225 for k in range(len(pi_digits)): %o A153225 sk = str(k%100) %o A153225 if sk == pi_digits[k:k+len(sk)]: %o A153225 yield k %o A153225 g = agen() %o A153225 print([next(g) for n in range(1, 48)]) # _Michael S. Branicky_, Jan 30 2022 %Y A153225 Cf. A000796, A057679, A057680, A109513, A109514. %K A153225 base,nonn %O A153225 1,2 %A A153225 _Gil Broussard_, Dec 21 2008 %E A153225 a(47) and beyond from _Michael S. Branicky_, Jan 30 2022