This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153252 #18 Jan 08 2024 16:28:24 %S A153252 0,1,2,4,7,12,19,29,44,65,94,134,188,261,358,486,654,872,1155,1519, %T A153252 1984,2576,3325,4270,5456,6939,8786,11077,13912,17406,21700,26961, %U A153252 33388,41221,50739,62278,76232,93067,113336,137684,166873 %N A153252 Coefficients of the sixth-order mock theta function psi_{-}(q). %H A153252 Vaclav Kotesovec, <a href="/A153252/b153252.txt">Table of n, a(n) for n = 0..1000</a> %H A153252 B. C. Berndt and S. H. Chan, <a href="http://dx.doi.org/10.1016/j.aim.2007.06.004">Sixth order mock theta functions</a>, Adv. Math. 216 (2007), 771-786. %F A153252 G.f.: Sum_{n >= 1} q^n(1+q)(1+q^2)...(1+q^(2n-2))/((1-q)(1-q^3)...(1-q^(2n-1))). %F A153252 a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/2)*sqrt(3*n)). - _Vaclav Kotesovec_, Jun 13 2019 %o A153252 (PARI) lista(nn) = q = qq + O(qq^nn); gf = sum(n = 1, nn, q^n * prod(k = 1, 2*n-2, 1 + q^k) / prod(k = 1, n, 1 - q^(2*k-1))); concat(0, Vec(gf)) \\_Michel Marcus_, Jun 18 2013 %Y A153252 Cf. A153251. %Y A153252 Other '6th-order' mock theta functions are at A053268, A053269, A053270, A053271, A053272, A053273, A053274. %K A153252 nonn %O A153252 0,3 %A A153252 _Jeremy Lovejoy_, Dec 21 2008