cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153274 Triangle, read by rows, T(n,k) = k^(n+1) * Pochhammer(1/k, n+1).

This page as a plain text file.
%I A153274 #7 Sep 08 2022 08:45:39
%S A153274 2,6,15,24,105,280,120,945,3640,9945,720,10395,58240,208845,576576,
%T A153274 5040,135135,1106560,5221125,17873856,49579075,40320,2027025,24344320,
%U A153274 151412625,643458816,2131900225,5925744000,362880,34459425,608608000,4996616625,26381811456,104463111025,337767408000,939536222625
%N A153274 Triangle, read by rows, T(n,k) = k^(n+1) * Pochhammer(1/k, n+1).
%C A153274 A Pochhammer function-based triangular sequence.
%C A153274 Row sums are: {2, 21, 409, 14650, 854776, 73920791, 8878927331, 1413788600036, 288152651134776, 73152069870215127, ...}.
%H A153274 G. C. Greubel, <a href="/A153274/b153274.txt">Rows n = 1..100 of triangle, flattened</a>
%F A153274 T(n, k) = k^(n+1) * Pochmammer(1/k, n+1).
%F A153274 T(n, k) = Product_{j=0..n} (j*k + 1). - _G. C. Greubel_, Mar 05 2020
%e A153274 Triangle begins as:
%e A153274       2;
%e A153274       6,      15;
%e A153274      24,     105,      280;
%e A153274     120,     945,     3640,      9945;
%e A153274     720,   10395,    58240,    208845,    576576;
%e A153274    5040,  135135,  1106560,   5221125,  17873856,   49579075;
%e A153274   40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000;
%p A153274 seq(seq( k^(n+1)*pochhammer(1/k, n+1), k=1..n), n=1..12); # _G. C. Greubel_, Mar 05 2020
%t A153274 Table[Apply[Plus, CoefficientList[j*k^n*Pochhammer[(j+k)/k, n], j]], {n, 12}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Mar 05 2020 *)
%t A153274 Table[k^(n+1)*Pochhammer[1/k, n+1], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 05 2020 *)
%o A153274 (PARI) T(n, k) = prod(j=0, n, j*k+1);
%o A153274 for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ _G. C. Greubel_, Mar 05 2020
%o A153274 (Magma) [(&*[j*k+1: j in [0..n]]): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Mar 05 2020
%o A153274 (Sage) [[k^(n+1)*rising_factorial(1/k,n+1) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Mar 05 2020
%o A153274 (GAP) Flat(List([1..12], n-> List([1..n], k-> Product([0..n], j-> j*k+1 )))); # _G. C. Greubel_, Mar 05 2020
%Y A153274 Cf. A000142, A001147, A007559, A007696, A008548, A008542, A045754, A045755, A045756.
%Y A153274 Cf. A142589, A256268.
%K A153274 nonn,tabl
%O A153274 1,1
%A A153274 _Roger L. Bagula_, Dec 22 2008
%E A153274 Edited by _G. C. Greubel_, Mar 05 2020