cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153295 G.f.: A(x) = F(x*G(x)^2) where F(x) = G(x/F(x)) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)) = 1 + x*G(x)^3 is the g.f. of A001764.

This page as a plain text file.
%I A153295 #13 Dec 23 2021 03:05:00
%S A153295 1,1,4,20,110,638,3828,23515,146972,930869,5958094,38462190,250054804,
%T A153295 1635421543,10750864640,70987129653,470542935654,3129729034478,
%U A153295 20880459397920,139689406647522,936832986074664,6297064070279195
%N A153295 G.f.: A(x) = F(x*G(x)^2) where F(x) = G(x/F(x)) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)) = 1 + x*G(x)^3 is the g.f. of A001764.
%H A153295 Alexander Burstein and Louis W. Shapiro, <a href="https://arxiv.org/abs/2112.11595">Pseudo-involutions in the Riordan group</a>, arXiv:2112.11595 [math.CO], 2021.
%F A153295 a(n) = Sum_{k=0..n} C(2k+1,k)/(2k+1) * C(3n-k,n-k)*2k/(3n-k) for n>0 with a(0)=1.
%F A153295 G.f. satisfies: A(x) = 1 + x*G(x)^2*A(x)^2 where G(x) is the g.f. of A001764.
%F A153295 G.f. satisfies: A(x/F(x)) = F(x*F(x)) where F(x) is the g.f. of A000108 (Catalan).
%F A153295 From _Alexander Burstein_, Nov 23 2019: (Start)
%F A153295 G.f. satisfies: A(x) = 1 + x*G(x)^3*m(x*G(x)^3), where m(x) is the g.f. of A001006 (Motzkin numbers) and G(x) is the g.f. of A001764 (ternary trees).
%F A153295 G.f. satisfies: A(-x*A(x)^7) = 1/A(x). (End)
%e A153295 G.f.: A(x) = F(x*G(x)^2) = 1 + x + 4*x^2 + 20*x^3 + 110*x^4 +... where
%e A153295 F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
%e A153295 F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
%e A153295 G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
%e A153295 G(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
%e A153295 G(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...
%e A153295 A(x)^2 = 1 + 2*x + 9*x^2 + 48*x^3 + 276*x^4 + 1656*x^5 +...
%e A153295 G(x)^2*A(x)^2 = 1 + 4*x + 20*x^2 + 110*x^3 + 638*x^4 +...
%o A153295 (PARI) {a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(3*(n-k)+2*k,n-k)*2*k/(3*(n-k)+2*k)))}
%Y A153295 Cf. A001764, A000108, A001006; A153294, A153296.
%K A153295 nonn
%O A153295 0,3
%A A153295 _Paul D. Hanna_, Jan 15 2009