This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153309 #37 Sep 08 2022 08:45:39 %S A153309 0,1,3,5,7,8,9,11,13,15,16,17,18,19,21,23,25,27,28,29,30,31,33,35,37, %T A153309 38,39,40,41,43,44,45,47,48,49,51,53,55,56,57,58,59,61,62,63,65,67,68, %U A153309 69,71,72,73,75,77,78,79,81,82,83,84,85,86,87,88,89,91,93,95 %N A153309 Numbers k such that 3*k + 1 is not prime. %C A153309 Terms (except 0) can be written as 3xy +- (x + y) for x > 0, y > 0. - _Ron R Spencer_, Aug 01 2016 %C A153309 Apart from a(2) = 1 the sequence comprises those numbers k such that (3*k)!/(3*k + 1) is an integer. - _Peter Bala_, Jan 25 2017 %H A153309 Vincenzo Librandi, <a href="/A153309/b153309.txt">Table of n, a(n) for n = 1..1000</a> %e A153309 Distribution of the even terms in the following triangular array: %e A153309 *; %e A153309 * 8; %e A153309 * * 16; %e A153309 * * * *; %e A153309 * 18 * * 40; %e A153309 * * 30 * * 56; %e A153309 * * * * * * *; %e A153309 * 28 * * 62 * * 96; %e A153309 * * 44 * * 82 * * 120; %e A153309 * * * * * * * * * *; %e A153309 * 38 * * 84 * * 130 * * 176; %e A153309 * * 58 * * 108 * * 158 * * 208; %e A153309 etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013 %p A153309 # produces the sequence apart from the term equal to 1 %p A153309 for n from 0 to 100 do %p A153309 if irem(factorial(3*n), 3*n+1) = 0 then print(n); end if; %p A153309 end do: # _Peter Bala_, Jan 25 2017 %t A153309 Select[Range[0, 200], !PrimeQ[3*# + 1]&] (* _Vincenzo Librandi_, Jan 12 2013 *) %o A153309 (Magma) [n: n in [0..150] | not IsPrime(3*n + 1)]; // _Vincenzo Librandi_, Jan 12 2013 %o A153309 (PARI) is(n)=!isprime(3*n+1) \\ _Charles R Greathouse IV_, Aug 01 2016 %Y A153309 Cf. A024892, A014076, A153170, A045751, A095277, A153088, A153329, A153343. %K A153309 nonn,easy %O A153309 1,3 %A A153309 _Vincenzo Librandi_, Dec 23 2008 %E A153309 Erroneous comment deleted by _N. J. A. Sloane_, Jun 23 2010 %E A153309 0 added by _Arkadiusz Wesolowski_, Jun 25 2011