A153342 Binomial transform of triangle A046854 (shifted).
1, 2, 0, 4, 1, 0, 8, 4, 1, 0, 16, 12, 5, 1, 0, 32, 32, 18, 6, 1, 0, 64, 80, 56, 25, 7, 1, 0, 128, 192, 160, 88, 33, 8, 1, 0, 256, 448, 432, 280, 129, 42, 9, 1, 0, 512, 1024, 1120, 832, 450, 180, 52, 10, 1, 0, 1024, 2304, 2816, 2352, 1452, 681, 242, 63, 11, 1, 0
Offset: 0
Examples
First few rows of the triangle = 1; 2, 0; 4, 1, 0; 8, 4, 1, 0; 16, 12, 5, 1, 0; 32, 32, 18, 6, 1, 0; 64, 80, 56, 25, 7, 1, 0; 128, 192, 160, 88, 33, 8, 1, 0; 256, 448, 432, 280, 129, 42, 9, 1, 0; 512, 1024, 1120, 832, 450, 180, 52, 10, 1, 0; ...
Links
- Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, Counting Subwords in Non-Decreasing Dyck Paths, J. Int. Seq. (2025) Vol. 28, Art. No. 25.1.6. See pp. 8, 19.
Formula
G.f.: (1-y*x)/(1-2*x-y*x+y*x^2). - Philippe Deléham, Mar 27 2012
T(n,k) = 2*T(n-1,l) + T(n-1,k-1) - T(n-2,k-1), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 27 2012
Extensions
Second term corrected by Philippe Deléham, Jan 01 2009
Comments