This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153349 #15 Mar 15 2024 02:22:45 %S A153349 1,7,4,4,7,1,1,7,4,4,7,1,1,7,4,4,7,1,1,7,4,4,7,1,1,7,4,4,7,1,1,7,4,4, %T A153349 7,1,1,7,4,4,7,1,1,7,4,4,7,1,1,7,4,4,7,1,1,7,4,4,7,1,1,7,4,4,7,1,1,7, %U A153349 4,4,7,1,1,7,4,4,7,1,1,7,4,4,7,1,1,7,4,4,7,1,1,7,4,4,7,1,1,7,4,4,7,1,1,7,4 %N A153349 Period 6: repeat [1, 7, 4, 4, 7, 1]. %C A153349 Also: the decimal expansion of 5287/30303. [_R. J. Mathar_, Jan 03 2009] %H A153349 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,-1,1). %F A153349 G.f.: (x^4+6*x^3-2*x^2+6*x+1)/((1-x)*(x^2-x+1)*(1+x+x^2)). a(n) = 4 + 3*A099837(n+2)/2 + 3*A010892(n+4)/2. [_R. J. Mathar_, Jan 03 2009] %F A153349 From _Wesley Ivan Hurt_, Jun 23 2016: (Start) %F A153349 a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n>4. %F A153349 a(n) = (8 - 3*cos(n*Pi/3) - 3*cos(2*n*Pi/3) + sqrt(3)*sin(n*Pi/3) + 3*sqrt(3)*sin(2*n*Pi/3))/2. (End) %p A153349 A153349:=n->[1, 7, 4, 4, 7, 1][(n mod 6)+1]: seq(A153349(n), n=0..100); # _Wesley Ivan Hurt_, Jun 23 2016 %t A153349 PadRight[{}, 100, {1, 7, 4, 4, 7, 1}] (* _Wesley Ivan Hurt_, Jun 23 2016 *) %o A153349 (Magma) &cat [[1, 7, 4, 4, 7, 1]^^20]; // _Wesley Ivan Hurt_, Jun 23 2016 %Y A153349 Cf. A010892, A099837. %K A153349 nonn,easy %O A153349 0,2 %A A153349 _Paul Curtz_, Dec 24 2008 %E A153349 Extended by _R. J. Mathar_, Jan 03 2009