This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153359 #8 Jul 19 2018 08:15:35 %S A153359 1,-1,1,-2,-1,3,-2,-1,2,1,-152,-78,125,90,15,-216,-114,157,135,35,3, %T A153359 -41424,-22444,27552,26551,8505,1197,63,-66000,-36620,40976,42917, %U A153359 15652,2814,252,9,-13037952,-7390832,7652084,8557940,3414775,714840,83790,5220,135,-21995904 %N A153359 Scaled coefficients of the M. O. Rubinstein polynomials. %C A153359 The polynomials alpha_{k}(s) are defined in formula (1.4) in the paper cited below. The coefficients are in ascending order. %H A153359 M. O. Rubinstein, <a href="http://arxiv.org/abs/0812.2592">Identities for the Riemann Zeta function.</a>, arXiv:0812.2592 [math.NT] %F A153359 The coefficients of the polynomials alpha_{k}(s)*A053657(k) where alpha_{0}(s) = 1 and alpha_{k+1}(s) = (s-1)/(k+2)-sum(j=1..k,((j-(s-1)*(k-j+1))/(k-j+2))*alpha_{j}(s))/(k+1). %e A153359 alpha_{0}(t) = 1 / 1; %e A153359 alpha_{1}(t) = (-1 + t) / 2; %e A153359 alpha_{2}(t) = (-2 - t + 3t^2) / 24; %e A153359 alpha_{3}(t) = (-2 - t + 2t^2 + t^3) / 48; %t A153359 alpha[0, _] = 1; alpha[k_, s_] := (s - 1)/(k + 1) - Sum[((j - (s - 1)*(k - j))/(k - j + 1))*alpha[j, s]/(k), {j, 1, k - 1}] // Expand; %t A153359 a53657[n_] := Product[p^Sum[Floor[(n - 1)/((p - 1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}]; %t A153359 row[k_] := CoefficientList[alpha[k, t]*a53657[k + 1], t]; %t A153359 Table[row[k], {k, 0, 7}] // Flatten (* _Jean-François Alcover_, Jul 19 2018 *) %Y A153359 Cf. A053657. %K A153359 easy,sign,tabl %O A153359 0,4 %A A153359 _Peter Luschny_, Dec 24 2008 %E A153359 More terms from _Giovanni Resta_, Jul 19 2018