This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153490 #19 Feb 16 2025 08:33:09 %S A153490 1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,0,1,1,1,1,1,1,0,0,1, %T A153490 1,1,1,0,1,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0, %U A153490 1,1,0,1,1,0,1,1,0,1 %N A153490 Sierpinski carpet, read by antidiagonals. %C A153490 The Sierpinski carpet is the fractal obtained by starting with a unit square and at subsequent iterations, subdividing each square into 3 X 3 smaller squares and removing (from nonempty squares) the middle square. After the n-th iteration, the upper-left 3^n X 3^n squares will always remain the same. Therefore this sequence, which reads these by antidiagonals, is well-defined. %C A153490 Row sums are {1, 2, 2, 4, 5, 4, 6, 6, 4, 8, 10, 8, ...}. %H A153490 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SierpinskiCarpet.html">Sierpinski Carpet</a>. %H A153490 Wikipedia, <a href="http://en.wikipedia.org/wiki/Sierpinski_carpet">Sierpinski carpet</a>. %e A153490 The Sierpinski carpet matrix reads %e A153490 1 1 1 1 1 1 1 1 1 ... %e A153490 1 0 1 1 0 1 1 0 1 ... %e A153490 1 1 1 1 1 1 1 1 1 ... %e A153490 1 1 1 0 0 0 1 1 1 ... %e A153490 1 0 1 0 0 0 1 0 1 ... %e A153490 1 1 1 0 0 0 1 1 1 ... %e A153490 1 1 1 1 1 1 1 1 1 ... %e A153490 1 0 1 1 0 1 1 0 1 ... %e A153490 1 1 1 1 1 1 1 1 1 ... %e A153490 (...) %e A153490 so the antidiagonals are %e A153490 {1}, %e A153490 {1, 1}, %e A153490 {1, 0, 1}, %e A153490 {1, 1, 1, 1}, %e A153490 {1, 1, 1, 1, 1}, %e A153490 {1, 0, 1, 1, 0, 1}, %e A153490 {1, 1, 1, 0, 1, 1, 1}, %e A153490 {1, 1, 1, 0, 0, 1, 1, 1}, %e A153490 {1, 0, 1, 0, 0, 0, 1, 0, 1}, %e A153490 {1, 1, 1, 1, 0, 0, 1, 1, 1, 1}, %e A153490 {1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1}, %e A153490 {1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1}, %e A153490 ... %t A153490 << MathWorld`Fractal`; fractal = SierpinskiCarpet; %t A153490 a = fractal[4]; Table[Table[a[[m]][[n - m + 1]], {m, 1, n}], {n, 1, 12}]; %t A153490 Flatten[%] %o A153490 (PARI) A153490_row(n,A=Mat(1))={while(#A<n,A=matrix(3*#A,3*#A,i,j,if(A[(i+2)\3,(j+2)\3],i%3!=2||j%3!=2)));vector(n,k,A[k,n-k+1])} \\ _M. F. Hasler_, Oct 23 2017 %Y A153490 Cf. A292688 (n-th antidiagonal concatenated as binary number), A292689 (decimal representation of these binary numbers). %Y A153490 Cf. A293143 (number of vertex points in a Sierpinski Carpet). %K A153490 nonn,tabl %O A153490 1,1 %A A153490 _Roger L. Bagula_, Dec 27 2008 %E A153490 Edited by _M. F. Hasler_, Oct 20 2017