A153498 Palindromes formed from concatenation of A147759(n) and the same string A147759(n) but without its initial digit.
1, 111, 10101, 1001001, 101010101, 10110101101, 1010101010101, 101001010100101, 10101010101010101, 1010110101010110101, 101010101010101010101, 10101001010101010010101
Offset: 1
Examples
n ............. a(n) 1 .............. 1 2 ............. 111 3 ............ 10101 4 ........... 1001001 5 .......... 101010101 6 ......... 10110101101 7 ........ 1010101010101 8 ....... 101001010100101 9 ...... 10101010101010101 10 .... 1010110101010110101 11 ... 101010101010101010101 ====================================== Another visualization of the structure ====================================== 1 .............. * 2 ............. /|\ 3 ............ /.|.\ 4 ........... /..|..\ 5 .......... /.*.|.*.\ 6 ......... /./|.|.|\.\ 7 ........ /./.|.|.|.\.\ 8 ....... /./..|.|.|..\.\ 9 ...... /./.*.|.|.|.*.\.\ 10 .... /././|.|.|.|.|\.\.\ 11 ... /././.|.|.|.|.|.\.\.\
Links
- Ray Chandler, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (101, -1110, 102010, -111000, 1010000, -1000000).
Formula
From R. J. Mathar, Feb 20 2009: (Start)
a(n)=101*a(n-1)-1110*a(n-2)+102010*a(n-3)-111000*a(n-4)+1010000*a(n-5)-1000000*a(n-6).
G.f.: x(1+10x+2000x^3-91000*x^4+100000x^5)/((1-100x)(1-x)(1+10x^2)(1+1000x^2)). (End)
Extensions
More terms from R. J. Mathar, Feb 20 2009
Keyword:base added by Charles R Greathouse IV, Apr 23 2010
Comments