This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153657 #10 Apr 25 2024 09:08:23 %S A153657 2,29,29,2,1678,2,2,24387,24387,2,2,25955,1362648,25955,2,2,27523, %T A153657 20483624,20483624,27523,2,2,29091,40833912,1107920632,40833912,29091, %U A153657 2,2,30659,62413512,17187432136,17187432136,62413512,30659,2,2,32227,85222424,49222798744,901876719128,49222798744,85222424,32227,2 %N A153657 Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +7)*prime(j)*T(n-2, k-1) with j=10, read by rows. %H A153657 G. C. Greubel, <a href="/A153657/b153657.txt">Rows n = 1..50 of the triangle, flattened</a> %F A153657 T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +7)*prime(j)*T(n-2, k-1) with j=10. %F A153657 From _G. C. Greubel_, Mar 06 2021: (Start) %F A153657 T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (2,7,10). %F A153657 Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1), for (p,q,j)=(2,7,10), = 2*A009973(n-1). (End) %e A153657 Triangle begins as: %e A153657 2; %e A153657 29, 29; %e A153657 2, 1678, 2; %e A153657 2, 24387, 24387, 2; %e A153657 2, 25955, 1362648, 25955, 2; %e A153657 2, 27523, 20483624, 20483624, 27523, 2; %e A153657 2, 29091, 40833912, 1107920632, 40833912, 29091, 2; %e A153657 2, 30659, 62413512, 17187432136, 17187432136, 62413512, 30659, 2; %e A153657 2, 32227, 85222424, 49222798744, 901876719128, 49222798744, 85222424, 32227, 2; %t A153657 T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]]; %t A153657 Table[T[n,k,2,7,10], {n,12}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Mar 06 2021 *) %o A153657 (Sage) %o A153657 @CachedFunction %o A153657 def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2) %o A153657 def T(n,k,p,q,j): %o A153657 if (n==2): return nth_prime(j) %o A153657 elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j) %o A153657 elif (k==1 or k==n): return 2 %o A153657 else: return T(n-1,k,2,7,10) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j) %o A153657 flatten([[T(n,k,p,q,j) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Mar 06 2021 %o A153657 (Magma) %o A153657 f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >; %o A153657 function T(n,k,p,q,j) %o A153657 if n eq 2 then return NthPrime(j); %o A153657 elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j); %o A153657 elif (k eq 1 or k eq n) then return 2; %o A153657 else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j); %o A153657 end if; return T; %o A153657 end function; %o A153657 [T(n,k,2,7,10): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Mar 06 2021 %Y A153657 Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), this sequence (2,7,10). %Y A153657 Cf. A009973 (powers of 29). %K A153657 nonn,tabl,easy,less %O A153657 1,1 %A A153657 _Roger L. Bagula_, Dec 30 2008 %E A153657 Edited by _G. C. Greubel_, Mar 06 2021