A153665 Greatest number m such that the fractional part of (3/2)^A081464(n) <= 1/m.
2, 4, 16, 25, 89, 91, 105, 127, 290, 668, 869, 16799, 92694, 137921, 257825, 350408, 419427, 723749, 5271294, 14223700, 18090494, 88123482, 706641581
Offset: 1
Examples
a(4)=25 since 1/26<fract((3/2)^A081464(4))=fract((3/2)^29)=0.039...<=1/25.
Programs
-
Mathematica
A081464 = {1, 2, 4, 29, 95, 153, 532, 613, 840, 2033, 2071, 3328, 12429, 112896, 129638, 371162, 1095666, 3890691, 4264691, 31685458, 61365215, 92432200, 144941960}; Table[fp = FractionalPart[(3/2)^A081464[[n]]]; m = Floor[1/fp]; While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A081464]}] (* Robert Price, Mar 26 2019 *)
Formula
a(n):=floor(1/fract((3/2)^A081464(n))), where fract(x) = x-floor(x).
Extensions
a(16)-a(23) from Robert Price, May 09 2012