cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153668 Greatest number m such that the fractional part of (3/2)^A153664(n) >= 1-(1/m).

This page as a plain text file.
%I A153668 #14 Mar 26 2019 19:20:26
%S A153668 2,14,222,1772,2747,12347,135794,90529,222246,570361,2134829,6901329,
%T A153668 4600886,3067257,5380892,75503109,814558605,543039070,362026046,
%U A153668 241350697,160900465,107266976,101721580,190708740,127139160
%N A153668 Greatest number m such that the fractional part of (3/2)^A153664(n) >= 1-(1/m).
%F A153668 a(n) = floor(1/(1-fract((3/2)^A153664(n)))), where fract(x) = x-floor(x).
%e A153668 a(2)=14, since 1-(1/15)=0.933...>fract((3/2)^A153664(2))=fract((3/2)^14)=0.929...>=1-(1/14).
%t A153668 A153664 = {1, 14, 163, 1256, 2677, 8093, 49304, 49305, 158643, 164000, 835999, 2242294, 2242295, 2242296, 3965133, 25380333, 92600006, 92600007, 92600008, 92600009, 92600010, 92600011, 9267816, 125040717, 125040718};
%t A153668 Table[fp = FractionalPart[(3/2)^A153664[[n]]]; m = Floor[1/(1 - fp)];
%t A153668 While[fp >= 1 - (1/m), m++]; m - 1, {n, 1, Length[A153664]}] (* _Robert Price_, Mar 26 2019 *)
%Y A153668 Cf. A002379, A081464, A153662, A153663, A153664, A153665, A153666, A153667.
%K A153668 nonn
%O A153668 1,1
%A A153668 _Hieronymus Fischer_, Dec 31 2008
%E A153668 a(11)-a(25) from _Robert Price_, May 10 2012