This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153671 #19 May 16 2020 15:40:35 %S A153671 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26, %T A153671 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49, %U A153671 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,110,180,783,859,1803,7591,10763,19105,50172,355146,1101696,1452050,3047334,3933030 %N A153671 Minimal exponents m such that the fractional part of (101/100)^m obtains a maximum (when starting with m=1). %C A153671 Recursive definition: a(1)=1, a(n) = least number m>a(n-1) such that the fractional part of (101/100)^m is greater than the fractional part of (101/100)^k for all k, 1<=k<m. %C A153671 The next such number must be greater than 10^6. %C A153671 a(84) > 10^7. _Robert Price_, Mar 21 2019 %F A153671 Recursion: a(1):=1, a(k):=min{ m>1 | fract((101/100)^m) > fract((101/100)^a(k-1))}, where fract(x) = x-floor(x). %e A153671 a(5)=5, since fract((101/100)^5)=0.05101005, but fract((101/100)^k)=0.01, 0.0201, 0.030301, 0.04060401 for 1<=k<=4; thus fract((101/100)^5)>fract((101/100)^k) for 1<=k<5. %t A153671 p = 0; Select[Range[1, 20000], %t A153671 If[FractionalPart[(101/100)^#] > p, p = FractionalPart[(101/100)^#]; %t A153671 True] &] (* _Robert Price_, Mar 21 2019 *) %o A153671 (Python) %o A153671 A153671_list, m, n, k, q = [], 1, 101, 100, 0 %o A153671 while m < 10**4: %o A153671 r = n % k %o A153671 if r > q: %o A153671 q = r %o A153671 A153671_list.append(m) %o A153671 m += 1 %o A153671 n *= 101 %o A153671 k *= 100 %o A153671 q *= 100 # _Chai Wah Wu_, May 16 2020 %Y A153671 Cf. A153663, A154130, A153675, A153679, A153687, A153695, A091560, A153711, A153719. %K A153671 nonn %O A153671 1,2 %A A153671 _Hieronymus Fischer_, Jan 06 2009 %E A153671 a(72)-a(83) from _Robert Price_, Mar 21 2019