A153673 Greatest number m such that the fractional part of (101/100)^A153669(n) <= 1/m.
100, 147, 703, 932, 1172, 3389, 7089, 8767, 11155, 17457, 20810, 25355, 1129226, 1741049, 1960780, 2179637, 2859688, 11014240, 75249086, 132665447, 499298451
Offset: 1
Examples
a(2)=147 since 1/148<fract((101/100)^A153669(2))=fract((101/100)^70)=0.00676...<=1/147.
Programs
-
Mathematica
A153669 = {1, 70, 209, 378, 1653, 2697, 4806, 13744, 66919, 67873, 75666, 81125, 173389, 529938, 1572706, 4751419, 7159431, 7840546, 15896994, 71074288, 119325567}; Table[fp = FractionalPart[(101/100)^A153669[[n]]]; m = Floor[1/fp]; While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A153669]}] (* Robert Price, Mar 25 2019 *)
Formula
a(n) = floor(1/fract((101/100)^A153669(n))), where fract(x) = x-floor(x).
Extensions
a(15)-a(21) from Robert Price, Mar 25 2019