A153687 Minimal exponents m such that the fractional part of (11/10)^m obtains a maximum (when starting with m=1).
1, 2, 3, 4, 5, 6, 7, 23, 56, 77, 103, 320, 1477, 1821, 2992, 15290, 180168, 410498, 548816, 672732, 2601223
Offset: 1
A153675 Greatest number m such that the fractional part of (101/100)^A153671(m) >= 1-(1/m).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 7, 9, 11, 13, 19, 30, 76, 81, 238, 913, 1334, 4645, 6812, 17396, 351085, 552184
Offset: 1
Keywords
Examples
a(5)=1, since 1-(1/2)=0.5>fract((101/100)^A153671(5))=fract((101/100)^5)=0.0510...>=1-(1/1).
Formula
a(n):=floor(1/(1-fract((101/100)^A153671(n)))), where fract(x) = x-floor(x).
A153691 Greatest number m such that the fractional part of (11/10)^A153687(m) >= 1-(1/m).
1, 1, 1, 1, 2, 4, 19, 21, 28, 151, 200, 709, 767, 5727, 15908, 162819, 302991
Offset: 1
Examples
a(6)=4, since 1-(1/5)=0.8>fract((11/10)^A153687(6))=fract((11/10)^6)=0.771...>=1-(1/4).
Formula
a(n):=floor(1/(1-fract((11/10)^A153687(n)))), where fract(x) = x-floor(x).
Comments
Examples
Crossrefs
Programs
Mathematica
Python
Formula
Extensions