This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153685 #13 Mar 19 2019 11:28:24 %S A153685 1,17,37,237,599,615,6638,13885,1063942,9479731 %N A153685 Minimal exponents m such that the fractional part of (11/10)^m obtains a minimum (when starting with m=1). %C A153685 Recursive definition: a(1)=1, a(n) = least number m>a(n-1) such that the fractional part of (11/10)^m is less than the fractional part of (11/10)^k for all k, 1<=k<m. %C A153685 The next such number must be greater than 2*10^5. %C A153685 a(11) > 10^7. _Robert Price_, Mar 19 2019 %F A153685 Recursion: a(1):=1, a(k):=min{ m>1 | fract((11/10)^m) < fract((11/10)^a(k-1))}, where fract(x) = x-floor(x). %e A153685 a(2)=17, since fract((11/10)^17)=0.05447.., but fract((11/10)^k)>=0.1 for 1<=k<=16; thus fract((11/10)^17)<fract((11/10)^k) for 1<=k<17. %t A153685 p = 1; Select[Range[1, 50000], %t A153685 If[FractionalPart[(11/10)^#] < p, p = FractionalPart[(11/10)^#]; %t A153685 True] &] (* _Robert Price_, Mar 19 2019 *) %Y A153685 Cf. A081464, A153669, A153689, A153677, A154130, A153693, A153701, A137994, A153717. %K A153685 nonn,more %O A153685 1,2 %A A153685 _Hieronymus Fischer_, Jan 06 2009 %E A153685 a(9)-a(10) from _Robert Price_, Mar 19 2019