This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153693 #19 Mar 24 2019 14:37:47 %S A153693 1,7,50,62,324,3566,66877,108201,123956,132891,182098,566593,3501843 %N A153693 Minimal exponents m such that the fractional part of (10/9)^m obtains a minimum (when starting with m=1). %C A153693 Recursive definition: a(1)=1, a(n) = least number m > a(n-1) such that the fractional part of (10/9)^m is less than the fractional part of (10/9)^k for all k, 1 <= k < m. %C A153693 The next such number must be greater than 2*10^5. %C A153693 a(14) > 10^7. - _Robert Price_, Mar 24 2019 %F A153693 Recursion: a(1):=1, a(k):=min{ m>1 | fract((10/9)^m) < fract((10/9)^a(k-1))}, where fract(x) = x-floor(x). %e A153693 a(2)=7, since fract((10/9)^7) = 0.09075.., but fract((10/9)^k) >= 0.11... for 1 <= k <= 6; thus fract((10/9)^7) < fract((10/9)^k) for 1 <= k < 7. %t A153693 $MaxExtraPrecision = 100000; %t A153693 p = 1; Select[Range[1, 10000], %t A153693 If[FractionalPart[(10/9)^#] < p, p = FractionalPart[(10/9)^#]; %t A153693 True] &] (* _Robert Price_, Mar 24 2019 *) %Y A153693 Cf. A081464, A153669, A153677, A153685, A153697, A154130, A153701, A137994, A153717. %K A153693 nonn,more %O A153693 1,2 %A A153693 _Hieronymus Fischer_, Jan 06 2009 %E A153693 a(12)-a(13) from _Robert Price_, Mar 24 2019