A153695 Minimal exponents m such that the fractional part of (10/9)^m obtains a maximum (when starting with m=1).
1, 2, 3, 4, 5, 6, 13, 17, 413, 555, 2739, 3509, 3869, 5513, 12746, 31808, 76191, 126237, 430116, 477190, 1319307, 3596185
Offset: 1
Examples
a(7)=13, since fract((10/9)^13) = 0.93..., but fract((10/9)^k) < 0.89 for 1 <= k <= 12; thus fract((10/9)^13) > fract((10/9)^k) for 1 <= k < 13 and 13 is the minimal exponent > 6 with this property.
Programs
-
Mathematica
$MaxExtraPrecision = 100000; p = 0; Select[Range[1, 20000], If[FractionalPart[(10/9)^#] > p, p = FractionalPart[(10/9)^#]; True] &] (* Robert Price, Mar 24 2019 *)
-
Python
A153695_list, m, m10, m9, q = [], 1, 10, 9, 0 while m < 10**4: r = m10 % m9 if r > q: q = r A153695_list.append(m) m += 1 m10 *= 10 m9 *= 9 q *= 9 # Chai Wah Wu, May 16 2020
Formula
Recursion: a(1):=1, a(k):=min{ m>1 | fract((10/9)^m) > fract((10/9)^a(k-1))}, where fract(x) = x-floor(x).
Extensions
a(19)-a(22) from Robert Price, Mar 24 2019
Comments