A153715 Greatest number m such that the fractional part of Pi^A153711(m) >= 1-(1/m).
1, 7, 32, 53, 189, 2665, 10810, 26577, 128778, 483367
Offset: 1
Examples
a(3) = 32, since 1-(1/33) = 0.9696... > fract(Pi^A153711(3)) = fract(Pi^15) = 0.96938... >= 0.96875 = 1-(1/32).
Crossrefs
Programs
-
Mathematica
$MaxExtraPrecision = 100000; A153711 = {1, 2, 15, 22, 58, 157, 1030, 5269, 145048, 151710}; Floor[1/(1-FractionalPart[Pi^A153711])] (* Robert Price, Apr 18 2019 *)
Formula
a(n) = floor(1/(1-fract(Pi^A153711(n)))), where fract(x) = x-floor(x).
Extensions
a(9)-a(10) from Robert Price, Apr 18 2019