This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153717 #16 Oct 05 2024 09:39:58 %S A153717 1,20,23,24,523,2811,3465,3776,4567,6145,8507,9353,19790,41136,62097, %T A153717 72506,107346 %N A153717 Minimal exponents m such that the fractional part of (Pi-2)^m obtains a minimum (when starting with m=1). %C A153717 Recursive definition: a(1)=1, a(n) = least number m>a(n-1) such that the fractional part of (Pi-2)^m is less than the fractional part of (Pi-2)^k for all k, 1<=k<m. %C A153717 The next such number must be greater than 200000. %C A153717 a(18) > 300000. - _Robert Price_, Mar 26 2019 %F A153717 Recursion: a(1):=1, a(k):=min{ m>1 | fract((Pi-2)^m) < fract((Pi-2)^a(k-1))}, where fract(x) = x-floor(x). %e A153717 a(3)=23, since fract((Pi-2)^23)=0.0260069.., but fract((Pi-2)^k)>=0.1326... for 1<=k<=22; thus fract((Pi-2)^23)<fract((Pi-2)^k) for 1<=k<23. %t A153717 $MaxExtraPrecision = 100000; %t A153717 p = 1; Select[Range[1, 10000], %t A153717 If[FractionalPart[(Pi - 2)^#] < p, p = FractionalPart[(Pi - 2)^#]; %t A153717 True] &] (* _Robert Price_, Mar 26 2019 *) %Y A153717 Cf. A081464, A153669, A153677, A153685, A153693, A153701, A137994, A153721, A154130. %K A153717 nonn,more %O A153717 1,2 %A A153717 _Hieronymus Fischer_, Jan 06 2009