A153722 Greatest number m such that the fractional part of (Pi-2)^A153718(n) <= 1/m.
7, 3, 38, 318, 78, 83, 265, 185, 73351, 356362
Offset: 1
Examples
a(3) = 38 since 1/39 < fract((Pi-2)^A153718(3)) = fract((Pi-2)^23) = 0.02600... <= 1/38.
Programs
-
Mathematica
A153718 = {1, 2, 23, 24, 35, 41, 65, 182, 72506, 107346}; Table[Floor[1/FractionalPart[(Pi - 2)^A153718[[n]]]], {n, 1, Length[A153718]}] (* Robert Price, May 10 2019 *)
Formula
a(n) = floor(1/fract((Pi-2)^A153718(n))), where fract(x) = x-floor(x).